Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Angew Chem Int Ed Engl ; 63(9): e202317091, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38192200

RESUMEN

The character of the electronic structure of acenes has been the subject of longstanding discussion. However, convincing experimental evidence of their open-shell character has so far been missing. Here, we present the on-surface synthesis of tridecacene molecules by thermal annealing of octahydrotridecacene on a Au(111) surface. We characterized the electronic structure of the tridecacene by scanning probe microscopy, which reveals the presence of an inelastic signal at 126 meV. We attribute the inelastic signal to spin excitation from the singlet diradical ground state to the triplet excited state. To rationalize the experimental findings, we carried out many-body ab initio calculations as well as model Hamiltonians to take into account the effect of the metallic substrate. Moreover, we provide a detailed analysis of how the dynamic electron correlation and virtual charge fluctuation between the molecule and metallic surface reduces the singlet-triplet band gap. Thus, this work provides the first experimental confirmation of the magnetic character of tridecacene.

2.
Phys Chem Chem Phys ; 20(16): 11037-11046, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29648564

RESUMEN

Understanding the mechanisms involved in the covalent attachment of organic molecules to surfaces is a major challenge for nanotechnology and surface science. On the basis of classical organic chemistry mechanistic considerations, key issues such as selectivity and reactivity of the organic adsorbates could be rationalized and exploited for the design of molecular-scale circuits and devices. Here we use tris(benzocyclobutadieno)triphenylene, a singular Y-shaped hydrocarbon containing antiaromatic cyclobutadienoid rings, as a molecular probe to study the reaction of polycyclic conjugated molecules with atomic scale moieties, dangling-bond (DB) dimers on a hydrogen-passivated Ge(001):H surface. By combining molecular design, synthesis, scanning tunneling microscopy and spectroscopy (STM/STS) and computational modeling, we show that the attachment involves a concerted [4+2] cycloaddition reaction that is completely site-selective and fully reversible. This selectivity, governed by the bond alternation induced by the presence of the cyclobutadienoid rings, allows for the control of the orientation of the molecules with respect to the surface DB-patterning. We also demonstrate that by judicious modification of the electronic levels of the polycyclic benzenoid through substituents, the reaction barrier height can be modified. Finally, we show that after deliberate tip-induced covalent bond cleavage, adsorbed molecules can be used to fine tune the electronic states of the DB dimer. This power to engineer deliberately the bonding configuration and electronic properties opens new perspectives for creating prototypical nanoscale circuitry.

3.
Angew Chem Int Ed Engl ; 57(33): 10500-10505, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-29791082

RESUMEN

A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the on-surface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by on-surface annealing. The structure of the generated acenes has been visualized by high-resolution non-contact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements.

4.
Phys Chem Chem Phys ; 18(28): 19309-17, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27375264

RESUMEN

Dangling bond (DB) arrays on Si(001):H and Ge(001):H surfaces can be patterned with atomic precision and they exhibit complex and rich physics making them interesting from both technological and fundamental perspectives. But their complex behavior often makes scanning tunneling microscopy (STM) images difficult to interpret and simulate. Recently it was shown that low-temperature imaging of unoccupied states of an unpassivated dimer on Ge(001):H results in a symmetric butterfly-like STM pattern, despite the fact that the equilibrium dimer configuration is expected to be a bistable, buckled geometry. Here, based on a thorough characterization of the low-bias switching events on Ge(001):H, we propose a new imaging model featuring a dynamical two-state rate equation. On both Si(001):H and Ge(001):H, this model allows us to reproduce the features of the observed symmetric empty-state images which strongly corroborates the idea that the patterns arise due to fast switching events and provides an insight into the relationship between the tunneling current and switching rates. We envision that our new imaging model can be applied to simulate other bistable systems where fluctuations arise from transiently charged electronic states.

5.
Phys Chem Chem Phys ; 18(5): 3854-61, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26766161

RESUMEN

Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.

6.
Phys Chem Chem Phys ; 18(25): 16757-65, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27271337

RESUMEN

Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.

7.
J Chem Phys ; 143(22): 224702, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26671391

RESUMEN

Molecular heterostructures are formed from meso-tetraphenyl porphyrins-Zn(II) (ZnTPP) and Cu(II)-phthalocyanines (CuPc) on the rutile TiO2(011) surface. We demonstrate that ZnTPP molecules form a quasi-ordered wetting layer with flat-lying molecules, which provides the support for growth of islands comprised of upright CuPc molecules. The incorporation of the ZnTPP layer and the growth of heterostructures increase the stability of the system and allow for room temperature scanning tunneling microscopy (STM) measurements, which is contrasted with unstable STM probing of only CuPc species on TiO2. We demonstrate that within the CuPc layer the molecules arrange in two phases and we identify molecular dimers as basic building blocks of the dominant structural phase.

8.
Chem Commun (Camb) ; 60(7): 858-861, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38131529

RESUMEN

Dithienoacenes with a heptacene core, heptaceno[2,3-b:11,12-b']bis[1]benzothiophene, have been synthesized through the combination of solution and surface assisted chemistry. The atomic composition, structural arrangement and electronic properties of the molecules on the Au(111) surface have been deeply explored by non-contact atomic force microscopy (nc-AFM), bond-resolved scanning tunnelling microscopy (BR-STM) and scanning tunneling spectroscopy (STS) corroborated by density functional theory (DFT) calculations. Our combined experiments reveal modifications induced by sulfur substitution.

9.
Int J Mol Sci ; 14(2): 2946-66, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23364615

RESUMEN

Titanium dioxide is one of the most frequently studied metal oxides, and its (110) rutile surface serves as a prototypical model for the surface science of such materials. Recent studies have also shown that the (011) surface is relatively easy for preparation in ultra-high vacuum (UHV) and that both the (110) and (011) surfaces could be precisely characterized using scanning tunneling microscopy (STM). The supramolecular self-assembly of organic molecules on the surfaces of titanium dioxide plays an important role in nanofabrication, and it can control the formation and properties of nanostructures, leading to wide range of applications covering the fields of catalysis, coatings and fabrication of sensors and extends to the optoelectronic industry and medical usage. Although the majority of experiments and theoretical calculations are focused on the adsorption of relatively small organic species, in recent years, there has been increasing interest in the properties of larger molecules that have several aromatic rings in which functional units could also be observed. The purpose of this review is to summarize the achievements in the study of single polycyclic molecules and thin layers adsorbed onto the surfaces of single crystalline titanium dioxide over the past decade.

10.
ACS Nano ; 17(3): 2580-2587, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36692226

RESUMEN

The formation of two types of nanographenes from custom designed and synthesized molecular precursors has been achieved through thermally induced intramolecular cyclodehydrogenation reactions on the semiconducting TiO2(110)-(1×1) surface, confirmed by the combination of high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) measurements, and corroborated by theoretical modeling. The application of this protocol on differently shaped molecular precursors demonstrates the ability to induce a highly efficient planarization reaction both within strained pentahelicenes as well as between vicinal phenyl rings. Additionally, by the combination of successive Ullmann-type polymerization and cyclodehydrogenation reactions, the archetypic 7-armchair graphene nanoribbons (7-AGNRs) have also been fabricated on the titanium dioxide surface from the standard 10,10'-dibromo-9,9'-bianthryl (DBBA) molecular precursors. These examples of the effective cyclodehydrogenative planarization processes provide perspectives for the rational design and synthesis of molecular nanostructures on semiconductors.

11.
J Phys Chem Lett ; 14(46): 10442-10449, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37962022

RESUMEN

On-surface synthesis has emerged as an attractive method for the atomically precise synthesis of new molecular nanostructures, being complementary to the widespread approach based on solution chemistry. It has been particularly successful in the synthesis of graphene nanoribbons and nanographenes. In both cases, the target compound is often generated through cyclodehydrogenation reactions, leading to planarization and the formation of hexagonal rings. To improve the flexibility and tunability of molecular units, however, the incorporation of other, nonbenzenoid, subunits is highly desirable. In this letter, we thoroughly analyze sequential cyclodehydrogenation reactions with a custom-designed molecular precursor. We demonstrate the step-by-step formation of hexagonal and pentagonal rings from the nonplanar precursor within fjord and cove regions, respectively. Computer models comprehensively support the experimental observations, revealing that both reactions imply an initial hydrogen abstraction and a final [1,2] hydrogen shift, but the formation of a pentagonal ring proceeds through a radical mechanism.

12.
Chem Commun (Camb) ; 58(25): 4063-4066, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262162

RESUMEN

Cyclobuta[1,2-b:3,4-b']ditetracene - an analogue of nonacene with a cyclobutadiene unit embedded in the central part has been synthesized by the combination of solution and on-surface chemistry. The atomic structure and electronic properties of the product on Au(111) have been determined by high resolution scanning tunnelling microscopy/spectroscopy corroborated by density functional theory calculations. Structural and magnetic parameters derived from theoretical calculations reveal that π conjugation is dominated by radialene-type contribution, with an admixture of cyclobutadiene-like antiaromaticity.

13.
J Chem Phys ; 134(22): 224701, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21682527

RESUMEN

High resolution scanning tunneling microscopy has been applied to investigate adsorption and self-assembly of large organic molecules on the TiO(2)(011) surface. The (011) face of the rutile titania has been rarely examined in this context. With respect to possible industrial applications of rutile, quite often in a powder form, knowledge on behavior of organic molecules on that face is required. In the presented study we fill in the gap and report on experiments focused on the self-assembly of organic nanostructures on the TiO(2)(011) surface. We use three different kinds of organic molecules of potential interest in various applications, namely, PTCDA and CuPc representing flat, planar stacking species, and Violet Landers specially designed for new applications in molecular electronics. In order to reach a complete picture of molecular behavior, extended studies with different surface coverage ranging from single molecule up to 2 monolayer (ML) thick films are performed. Our results show that the adsorption behavior is significantly different from previously observed for widely used metallic templates. Creation of highly ordered molecular lines, quasi-ordered wetting layers, controlled geometrical reorientation upon thermal treatment, existence of specific adsorption geometries, and prospects for tip-induced molecule ordering and manipulation provide better understanding and add new phenomena to the knowledge on the (011) face of rutile titania.

14.
Beilstein J Nanotechnol ; 12: 232-241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747697

RESUMEN

Self-assembly of iron(II) phthalocyanine (FePc) molecules on a Ge(001):H surface results in monolayer islands extending over hundreds of nanometers and comprising upright-oriented entities. Scanning tunneling spectroscopy reveals a transport gap of 2.70 eV in agreement with other reports regarding isolated FePc molecules. Detailed analysis of single FePc molecules trapped at surface defects indicates that the molecules stay intact upon adsorption and can be manipulated away from surface defects onto a perfectly hydrogenated surface. This allows for their isolation from the germanium surface.

15.
ACS Nano ; 15(1): 1548-1554, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33346643

RESUMEN

The formation of s-indaceno[1,2-b:5,6-b']ditetracene and as-indaceno[2,3-b:6,7-b']ditetracene containing indenofluorene cores from a common precursor has been achieved by a dehydrogenative surface-assisted cyclization on Au(111) and confirmed by bond-resolved non-contact atomic force microscopy. On-surface generated as-indaceno[2,3-b:6,7-b']ditetracenes undergo fusion, which leads to T-shaped adducts by an intermolecular cycloaddition. The same type of cycloaddition, which has no parallel in solution chemistry, has been observed between as-indaceno[2,3-b:6,7-b']ditetracene and pentacene or octacene. These examples of surface-assisted cycloaddition provide perspectives for the rational design and synthesis of molecular nanostructures.

16.
J Vis Exp ; (169)2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749671

RESUMEN

On-surface synthesis has recently been regarded as a promising approach for the generation of new molecular structures. It has been particularly successful in the synthesis of graphene nanoribbons, nanographenes and intrinsically reactive and instable, yet attractive species. It is based on the combination of solution chemistry aimed at preparation of appropriate molecular precursors for further ultra-high vacuum surface assisted transformations. This approach also owes its success to an incredible development of characterization techniques, such as scanning tunneling/atomic force microscopy and related methods, which allow detailed, local characterization at atomic scale. While the surface-assisted synthesis can provide molecular nanostructures with outstanding precision, down to single atoms, it suffers from basing on metallic surfaces and often limited yield. Therefore, the extension of the approach away from metals and the struggle to increase productivity seem to be significant challenges toward wider applications. Herein, we demonstrate the on-surface synthesis approach for generation of non-planar nanographenes, which are synthesized through a combination of solution chemistry and sequential surface-assisted processes, together with the detailed characterization by scanning probe microscopy methods.


Asunto(s)
Grafito/química , Microscopía de Fuerza Atómica/métodos , Nanoestructuras/química , Monóxido de Carbono/química , Oro/química , Grafito/síntesis química , Hidrogenación , Nanoestructuras/ultraestructura , Porosidad , Soluciones , Análisis Espectral , Propiedades de Superficie , Vacio
17.
Chemphyschem ; 11(16): 3522-8, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20872393

RESUMEN

The adsorption of individual [11]anthrahelicene molecules and their self-assembly into monolayer islands on an InSb(001) c(8×2) reconstructed surface is studied with low-temperature scanning probe microscopy. A racemic mixture is deposited on atomically flat terraces of InSb at room temperature. At lower coverage, the molecules tend to decorate atomic step edges of the substrate. At higher coverage, [11]anthrahelicene molecules form 2D islands. A quasi-hexagonal ordering of molecules within the layer is identified. Furthermore, it is shown that molecules adsorb with the helical axis almost perpendicular to the substrate. Interference between tunneling through the molecular layer and directly through space is reported. Finally, experimental results are compared to those of theoretical calculations.

18.
ACS Nano ; 14(10): 13316-13323, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32897690

RESUMEN

Surface-assisted synthesis has become a powerful approach for generation of molecular nanostructures, which could not be obtained via traditional solution chemistry. Nowadays there is an intensive search for reactions that could proceed on flat surfaces in order to boost the versatility and applicability of synthesized nano-objects. Here we propose application of atomic hydrogen combined with on-surface synthesis in order to tune the reaction pathways. We demonstrate that atomic hydrogen could be widely applied: (1) as a cleaning tool, which allows removal of halogen residues from the surface after Ullmann couplings/polymerization, (2) by reaction with surface organometallics to provide stable hydrogenated species, and (3) as a reagent for debromination or desulfurization of adsorbed species.

19.
J Phys Chem Lett ; 11(24): 10290-10297, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33226814

RESUMEN

Graphene nanoribbons (GNRs) and their derivatives attract growing attention due to their excellent electronic and magnetic properties as well as the fine-tuning of such properties that can be obtained by heteroatom substitution and/or edge morphology modification. Here, we introduce graphene nanoribbon derivatives-organometallic hybrids with gold atoms incorporated between the carbon skeleton and side Cl atoms. We show that narrow chlorinated 5-AGNROHs (armchair graphene nanoribbon organometallic hybrids) can be fabricated by on-surface polymerization with omission of the cyclodehydrogenation reaction by a proper choice of tailored molecular precursors. Finally, we describe a route to exchange chlorine atoms connected through gold atoms to the carbon skeleton by hydrogen atom treatment. This is achieved directly on the surface, resulting in perfect unsubstituted hydrogen-terminated GNRs. This will be beneficial in the molecule on-surface processing when the preparation of final unsubstituted hydrocarbon structure is desired.

20.
Chemphyschem ; 10(12): 2026-33, 2009 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-19472264

RESUMEN

The adsorption of individual Violet Lander molecules self-assembled on the c(8x2) reconstructed InSb(001) surface in its native form and on the surface passivated with one to three monolayers of KBr is investigated by means of low-temperature scanning tunneling microscopy (STM). Preferred adsorption sites of the molecules are found on flat terraces as well as at atomic step edges. For molecules immobilized on flat terraces, several different conformations are identified from STM images acquired with submolecular resolution and are explained by the rotation of the 3,5-di-tert-butylphenyl groups around sigma bonds, which allows adjustment of the molecular geometry to the anisotropic substrate structure. Formation of ordered molecular chains is found at steps running along substrate reconstruction rows, whereas at the steps oriented perpendicularly no intermolecular ordering is recorded. It is also shown that the molecules deposited at two or more monolayers of the epitaxial KBr spacer do not have any stable adsorption sites recorded with STM. Prospects for the manipulation of single molecules by using the STM tip on highly anisotropic substrates are also explored, and demonstrate the feasibility of controlled lateral displacement in all directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA