Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(1): 198-212, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995986

RESUMEN

In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Animales , Trastorno Autístico/metabolismo , Ganglios Basales/metabolismo , Ganglios Basales/fisiopatología , Moléculas de Adhesión Celular Neuronal/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante
2.
Brain ; 147(3): 1057-1074, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153327

RESUMEN

Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged. Moreover, we revealed ischaemic pericytes to be fundamentally implicated in capillary no-reflow by limiting and arresting blood flow within the first 24 h post stroke. Despite sustaining acute membrane damage, we observed that over half of all cortical pericytes survived ischaemia and responded to vasoactive stimuli, upregulated unique transcriptomic profiles and replicated. Finally, we demonstrated the delayed recovery of capillary diameter by ischaemic pericytes after reperfusion predicted vessel reconstriction in the subacute phase of stroke. Cumulatively, these findings demonstrate that surviving cortical pericytes remain both viable and promising therapeutic targets to counteract no-reflow after ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Pericitos/fisiología , Infarto Cerebral
3.
FASEB J ; 37(3): e22752, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36794636

RESUMEN

Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.


Asunto(s)
Aterosclerosis , Factores Inhibidores de la Migración de Macrófagos , Placa Aterosclerótica , Animales , Ratones , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Aterosclerosis/metabolismo , Quimiocinas , Envejecimiento , Apolipoproteínas E/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Glicoproteínas de Membrana , Receptores Inmunológicos
4.
EMBO Rep ; 23(6): e54305, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35527514

RESUMEN

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/genética , Enzima Convertidora de Angiotensina 2 , Fusión Celular , Humanos , Pulmón , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
5.
Cell Mol Life Sci ; 79(10): 512, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094626

RESUMEN

To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine-chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.


Asunto(s)
Aterosclerosis , Factores Inhibidores de la Migración de Macrófagos , Trombosis , Aterosclerosis/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factor Plaquetario 4 , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
7.
BMC Genomics ; 19(1): 140, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29439658

RESUMEN

BACKGROUND: High-fidelity preservation strategies for primary tissues are in great demand in the single cell RNAseq community. A reliable method would greatly expand the scope of feasible multi-site collaborations and maximize the utilization of technical expertise. When choosing a method, standardizability and fidelity are important factors to consider due to the susceptibility of single-cell RNAseq analysis to technical noise. Existing approaches such as cryopreservation and chemical fixation are less than ideal for failing to satisfy either or both of these standards. RESULTS: Here we propose a new strategy that leverages preservation schemes developed for organ transplantation. We evaluated the strategy by storing intact mouse kidneys in organ transplant preservative solution at hypothermic temperature for up to 4 days (6 h, 1, 2, 3, and 4 days), and comparing the quality of preserved and fresh samples using FACS and single cell RNAseq. We demonstrate that the strategy effectively maintained cell viability, transcriptome integrity, cell population heterogeneity, and transcriptome landscape stability for samples after up to 3 days of preservation. The strategy also facilitated the definition of the diverse spectrum of kidney resident immune cells, to our knowledge the first time at single cell resolution. CONCLUSIONS: Hypothermic storage of intact primary tissues in organ transplant preservative maintains the quality and stability of the transcriptome of cells for single cell RNAseq analysis. The strategy is readily generalizable to primary specimens from other tissue types for single cell RNAseq analysis.


Asunto(s)
Criopreservación/métodos , Trasplante de Riñón/métodos , Riñón/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Supervivencia Celular/genética , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Riñón/citología , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos
8.
Proc Natl Acad Sci U S A ; 111(13): E1291-9, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639501

RESUMEN

Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1α, Nrxn1ß, Nrxn2ß, Nrxn3α, and Nrxn3ß mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1α and Nrxn3α (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-α, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that α-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.


Asunto(s)
Empalme Alternativo/genética , Moléculas de Adhesión Celular Neuronal/genética , Análisis de Secuencia de ARN/métodos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/metabolismo , Secuencia Conservada/genética , Exones/genética , Ratones , Datos de Secuencia Molecular , Corteza Prefrontal/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Hum Mol Genet ; 23(11): 2995-3007, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24436303

RESUMEN

Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for HD.


Asunto(s)
Carbazoles/administración & dosificación , Proteínas de Drosophila/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/enzimología , Sirtuina 1/antagonistas & inhibidores , Sirtuinas/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células PC12 , Ratas , Ratas Sprague-Dawley , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
10.
J Neurosci ; 33(36): 14617-28, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005312

RESUMEN

Neurexins are presynaptic cell-adhesion molecules that bind to postsynaptic cell-adhesion molecules such as neuroligins and leucine-rich repeat transmembrane proteins (LRRTMs). When neuroligins or LRRTMs are expressed in a nonneuronal cell, cocultured neurons avidly form heterologous synapses onto that cell. Here we show that knockdown of all neurexins in cultured hippocampal mouse neurons did not impair synapse formation between neurons, but blocked heterologous synapse formation induced by neuroligin-1 or LRRTM2. Rescue experiments demonstrated that all neurexins tested restored heterologous synapse formation in neurexin-deficient neurons. Neurexin-deficient neurons exhibited a decrease in the levels of the PDZ-domain protein CASK (a calcium/calmodulin-activated serine/threonine kinase), which binds to neurexins, and mutation of the PDZ-domain binding sequence of neurexin-3ß blocked its transport to the neuronal surface and impaired heterologous synapse formation. However, replacement of the C-terminal neurexin sequence with an unrelated PDZ-domain binding sequence that does not bind to CASK fully restored surface transport and heterologous synapse formation in neurexin-deficient neurons, suggesting that no particular PDZ-domain protein is essential for neurexin surface transport or heterologous synapse formation. Further mutagenesis revealed, moreover, that the entire neurexin cytoplasmic tail was dispensable for heterologous synapse formation in neurexin-deficient neurons, as long as the neurexin protein was transported to the neuronal cell surface. Furthermore, the single LNS-domain (for laminin/neurexin/sex hormone-binding globulin-domain) of neurexin-1ß or neurexin-3ß, when tethered to the presynaptic plasma membrane by a glycosylinositolphosphate anchor, was sufficient for rescuing heterologous synapse formation in neurexin-deficient neurons. Our data suggest that neurexins mediate heterologous synapse formation via an extracellular interaction with presynaptic and postsynaptic ligands without the need for signal transduction by the neurexin cytoplasmic tail.


Asunto(s)
Membrana Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Sinapsis/fisiología
11.
Nat Neurosci ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937583

RESUMEN

Age-related myelin damage induces inflammatory responses, yet its involvement in Alzheimer's disease remains uncertain, despite age being a major risk factor. Using a mouse model of Alzheimer's disease, we found that amyloidosis itself triggers age-related oligodendrocyte and myelin damage. Mechanistically, CD8+ T cells promote the progressive accumulation of abnormally interferon-activated microglia that display myelin-damaging activity. Thus, our data suggest that immune responses against myelinating oligodendrocytes may contribute to neurodegenerative diseases with amyloidosis.

12.
Proc Natl Acad Sci U S A ; 107(17): 7927-32, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20378838

RESUMEN

Huntington's disease (HD), an incurable neurodegenerative disorder, has a complex pathogenesis including protein aggregation and the dysregulation of neuronal transcription and metabolism. Here, we demonstrate that inhibition of sirtuin 2 (SIRT2) achieves neuroprotection in cellular and invertebrate models of HD. Genetic or pharmacologic inhibition of SIRT2 in a striatal neuron model of HD resulted in gene expression changes including significant down-regulation of RNAs responsible for sterol biosynthesis. Whereas mutant huntingtin fragments increased sterols in neuronal cells, SIRT2 inhibition reduced sterol levels via decreased nuclear trafficking of SREBP-2. Importantly, manipulation of sterol biosynthesis at the transcriptional level mimicked SIRT2 inhibition, demonstrating that the metabolic effects of SIRT2 inhibition are sufficient to diminish mutant huntingtin toxicity. These data identify SIRT2 inhibition as a promising avenue for HD therapy and elucidate a unique mechanism of SIRT2-inhibitor-mediated neuroprotection. Furthermore, the ascertainment of SIRT2's role in regulating cellular metabolism demonstrates a central function shared with other sirtuin proteins.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de Huntington/prevención & control , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Esteroles/biosíntesis , Análisis de Varianza , Animales , Western Blotting , Caenorhabditis elegans , Drosophila , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Microscopía Confocal
13.
Methods Mol Biol ; 2616: 205-212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715937

RESUMEN

Obtaining high-quality RNA sequencing results from archived biological tissues, such as paraformaldehyde (PFA)-fixed sections for microscopy, is challenging due to the incompatibility of current high-throughput RNA sequencing methods. Here, we present a low-input method for RNA sequencing from archived PFA-fixed sections. Using this method, we routinely obtain high-quality sequencing results from archived mouse brain sections that are prepared for imaging without any special care for avoiding RNA degradation. The PFA cross-linking locks and protects RNA from degradation but cross-linking is also hard to reverse. For this goal, we developed an effective decrosslinking protocol based on Proteinase K activity to retrieve PFA-cross-linked mRNAs which was followed up by a Smart-seq2 library preparation protocol. Our protocol enables spatially defined transcriptomic analysis of archived sections and allows the genomic analysis of PFA-fixed samples. Furthermore, our protocol inactivates pathogenic samples and allows working under regular biosafety levels.


Asunto(s)
Microscopía , ARN , Animales , Ratones , ARN/genética , ARN Mensajero , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Nat Commun ; 14(1): 4115, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433806

RESUMEN

Understanding the complexity of cellular function within a tissue necessitates the combination of multiple phenotypic readouts. Here, we developed a method that links spatially-resolved gene expression of single cells with their ultrastructural morphology by integrating multiplexed error-robust fluorescence in situ hybridization (MERFISH) and large area volume electron microscopy (EM) on adjacent tissue sections. Using this method, we characterized in situ ultrastructural and transcriptional responses of glial cells and infiltrating T-cells after demyelinating brain injury in male mice. We identified a population of lipid-loaded "foamy" microglia located in the center of remyelinating lesion, as well as rare interferon-responsive microglia, oligodendrocytes, and astrocytes that co-localized with T-cells. We validated our findings using immunocytochemistry and lipid staining-coupled single-cell RNA sequencing. Finally, by integrating these datasets, we detected correlations between full-transcriptome gene expression and ultrastructural features of microglia. Our results offer an integrative view of the spatial, ultrastructural, and transcriptional reorganization of single cells after demyelinating brain injury.


Asunto(s)
Lesiones Encefálicas , Transcriptoma , Masculino , Animales , Ratones , Hibridación Fluorescente in Situ , Microscopía Electrónica , Lesiones Encefálicas/genética , Lípidos
15.
Elife ; 112022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512388

RESUMEN

Neuroinflammation after stroke is characterized by the activation of resident microglia and the invasion of circulating leukocytes into the brain. Although lymphocytes infiltrate the brain in small number, they have been consistently demonstrated to be the most potent leukocyte subpopulation contributing to secondary inflammatory brain injury. However, the exact mechanism of how this minimal number of lymphocytes can profoundly affect stroke outcome is still largely elusive. Here, using a mouse model for ischemic stroke, we demonstrated that early activation of microglia in response to stroke is differentially regulated by distinct T cell subpopulations - with TH1 cells inducing a type I INF signaling in microglia and regulatory T cells (TREG) cells promoting microglial genes associated with chemotaxis. Acute treatment with engineered T cells overexpressing IL-10 administered into the cisterna magna after stroke induces a switch of microglial gene expression to a profile associated with pro-regenerative functions. Whereas microglia polarization by T cell subsets did not affect the acute development of the infarct volume, these findings substantiate the role of T cells in stroke by polarizing the microglial phenotype. Targeting T cell-microglia interactions can have direct translational relevance for further development of immune-targeted therapies for stroke and other neuroinflammatory conditions.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Microglía/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Transducción de Señal/fisiología
16.
Nat Neurosci ; 25(11): 1446-1457, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280798

RESUMEN

A hallmark of nervous system aging is a decline of white matter volume and function, but the underlying mechanisms leading to white matter pathology are unknown. In the present study, we found age-related alterations of oligodendrocyte cell state with a reduction in total oligodendrocyte density in aging murine white matter. Using single-cell RNA-sequencing, we identified interferon (IFN)-responsive oligodendrocytes, which localize in proximity to CD8+ T cells in aging white matter. Absence of functional lymphocytes decreased the number of IFN-responsive oligodendrocytes and rescued oligodendrocyte loss, whereas T-cell checkpoint inhibition worsened the aging response. In addition, we identified a subpopulation of lymphocyte-dependent, IFN-responsive microglia in the vicinity of the CD8+ T cells in aging white matter. In summary, we provide evidence that CD8+ T-cell-induced, IFN-responsive oligodendrocytes and microglia are important modifiers of white matter aging.


Asunto(s)
Microglía , Sustancia Blanca , Animales , Ratones , Linfocitos T CD8-positivos , Interferones , Oligodendroglía
17.
Neuron ; 110(21): 3458-3483, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36327895

RESUMEN

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.


Asunto(s)
Microglía
18.
STAR Protoc ; 2(2): 100590, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34159323

RESUMEN

Single-cell RNA sequencing (scRNA-seq) provides the transcriptome of individual cells and addresses previously intractable problems including the central nervous system's transcriptional responses during health and disease. However, dissociating brain cells is challenging and induces artificial transcriptional responses. Here, we describe an enzymatic dissociation method for mouse brain that prevents dissociation artifacts and lowers technical variations with standardized steps. We tested this protocol on microdissected brain tissue of 3-week- to 24-month-old mice and obtained high-quality scRNA-seq results. For complete details on the use and execution of this protocol, please refer to Safaiyan et al. (2021).


Asunto(s)
Encéfalo/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Artefactos , Perfilación de la Expresión Génica/métodos , Ratones
19.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34424266

RESUMEN

Upon demyelinating injury, microglia orchestrate a regenerative response that promotes myelin repair, thereby restoring rapid signal propagation and protecting axons from further damage. Whereas the essential phagocytic function of microglia for remyelination is well known, the underlying metabolic pathways required for myelin debris clearance are poorly understood. Here, we show that cholesterol esterification in male mouse microglia/macrophages is a necessary adaptive response to myelin debris uptake and required for the generation of lipid droplets upon demyelinating injury. When lipid droplet biogenesis is defective, innate immune cells do not resolve, and the regenerative response fails. We found that triggering receptor expressed on myeloid cells 2 (TREM2)-deficient mice are unable to adapt to excess cholesterol exposure, form fewer lipid droplets, and build up endoplasmic reticulum (ER) stress. Alleviating ER stress in TREM2-deficient mice restores lipid droplet biogenesis and resolves the innate immune response. Thus, we conclude that TREM2-dependent formation of lipid droplets constitute a protective response required for remyelination to occur.


Asunto(s)
Gotas Lipídicas/metabolismo , Glicoproteínas de Membrana/metabolismo , Fagocitos/fisiología , Receptores Inmunológicos/metabolismo , Remielinización/fisiología , Animales , Colesterol/metabolismo , Estrés del Retículo Endoplásmico , Esterificación , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Biosíntesis de Proteínas/fisiología , Receptores Inmunológicos/genética , Esterol O-Aciltransferasa/genética
20.
Neuron ; 109(7): 1100-1117.e10, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33606969

RESUMEN

Aging results in gray and white matter degeneration, but the specific microglial responses are unknown. Using single-cell RNA sequencing from white and gray matter separately, we identified white matter-associated microglia (WAMs), which share parts of the disease-associated microglia (DAM) gene signature and are characterized by activation of genes implicated in phagocytic activity and lipid metabolism. WAMs depend on triggering receptor expressed on myeloid cells 2 (TREM2) signaling and are aging dependent. In the aged brain, WAMs form independent of apolipoprotein E (APOE), in contrast to mouse models of Alzheimer's disease, in which microglia with the WAM gene signature are generated prematurely and in an APOE-dependent pathway similar to DAMs. Within the white matter, microglia frequently cluster in nodules, where they are engaged in clearing degenerated myelin. Thus, WAMs may represent a potentially protective response required to clear degenerated myelin accumulating during white matter aging and disease.


Asunto(s)
Microglía/fisiología , Sustancia Blanca/citología , Sustancia Blanca/crecimiento & desarrollo , Envejecimiento/fisiología , Enfermedad de Alzheimer/genética , Animales , Apolipoproteínas E/genética , Enfermedades Desmielinizantes/patología , Regulación de la Expresión Génica , Sustancia Gris/citología , Sustancia Gris/crecimiento & desarrollo , Inmunohistoquímica , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/ultraestructura , Vaina de Mielina/metabolismo , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/genética , Análisis de Secuencia de ARN , Transducción de Señal/fisiología , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA