Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 228(7): 857-867, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37572355

RESUMEN

BACKGROUND: We sought to identify potential antigens for discerning between humoral responses elicited after vaccination with CoronaVac (a severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] inactivated vaccine), natural infection, or breakthrough infection. METHODS: Serum samples obtained from volunteers immunized with CoronaVac (2 and 3 doses), breakthrough case patients, and from convalescent individuals were analyzed to determine the immunoglobulin (Ig) G responses against 3 structural and 8 nonstructural SARS-CoV-2 antigens. RESULTS: Immunization with CoronaVac induced higher levels of antibodies against the viral membrane (M) protein compared with convalescent subjects both after primary vaccination and after a booster dose. Individuals receiving a booster dose displayed equivalent levels of IgG antibodies against the nucleocapsid (N) protein, similar to convalescent subjects. Breakthrough case patients produced the highest antibody levels against the N and M proteins. Antibodies against nonstructural viral proteins were present in >50% of the convalescent subjects. CONCLUSIONS: Vaccinated individuals elicited a different humoral response compared to convalescent subjects. The analysis of particular SARS-CoV-2 antigens could be used as biomarkers for determining infection in subjects previously vaccinated with CoronaVac.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Virión , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Vacunación
2.
Biochem Cell Biol ; 101(6): 465-480, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467514

RESUMEN

GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.


Asunto(s)
Neoplasias Pulmonares , Receptores de Ácido Retinoico , Masculino , Humanos , Ésteres del Forbol , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Pulmonares/patología , Inflamación , Tretinoina
3.
Crit Rev Microbiol ; : 1-25, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37348003

RESUMEN

Lipids play essential roles in the cell as components of cellular membranes, signaling molecules, and energy storage sources. Lipid droplets are cellular organelles composed of neutral lipids, such as triglycerides and cholesterol esters, and are also considered as cellular energy reserves, yet new functions have been recently associated with these structures, such as regulators of oxidative stress and cellular lipotoxicity, as well as modulators of pathogen infection through immune regulation. Lipid metabolism and lipid droplets participate in the infection process of many RNA viruses and control their replication and assembly, among others. Here, we review and discuss the contribution of lipid metabolism and lipid droplets over the replication cycle of RNA viruses, altogether pointing out potentially new pharmacological antiviral targets associated with lipid metabolism.

4.
Clin Infect Dis ; 75(1): e792-e804, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34537835

RESUMEN

BACKGROUND: The development of effective vaccines against coronavirus disease 2019 is a global priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine with promising safety and immunogenicity profiles. This article reports safety and immunogenicity results obtained for healthy Chilean adults aged ≥18 years in a phase 3 clinical trial. METHODS: Volunteers randomly received 2 doses of CoronaVac or placebo, separated by 2 weeks. A total of 434 volunteers were enrolled, 397 aged 18-59 years and 37 aged ≥60 years. Solicited and unsolicited adverse reactions were registered from all volunteers. Blood samples were obtained from a subset of volunteers and analyzed for humoral and cellular measures of immunogenicity. RESULTS: The primary adverse reaction in the 434 volunteers was pain at the injection site, with a higher incidence in the vaccine than in the placebo arm. Adverse reactions observed were mostly mild and local. No severe adverse events were reported. The humoral evaluation was performed on 81 volunteers. Seroconversion rates for specific anti-S1-receptor binding domain (RBD) immunoglobulin G (IgG) were 82.22% and 84.44% in the 18-59 year age group and 62.69% and 70.37% in the ≥60 year age group, 2 and 4 weeks after the second dose, respectively. A significant increase in circulating neutralizing antibodies was detected 2 and 4 weeks after the second dose. The cellular evaluation was performed on 47 volunteers. We detected a significant induction of T-cell responses characterized by the secretion of interferon-γ (IFN-γ) upon stimulation with Mega Pools of peptides from SARS-CoV-2. CONCLUSIONS: Immunization with CoronaVac in a 0-14 schedule in Chilean adults aged ≥18 years is safe, induces anti-S1-RBD IgG with neutralizing capacity, activates T cells, and promotes the secretion of IFN-γ upon stimulation with SARS-CoV-2 antigens.


Asunto(s)
COVID-19 , Vacunas Virales , Adolescente , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Chile , Método Doble Ciego , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G , Persona de Mediana Edad , SARS-CoV-2 , Vacunas de Productos Inactivados/efectos adversos , Adulto Joven
5.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806081

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by a robust inflammatory response against myelin sheath antigens, which causes astrocyte and microglial activation and demyelination of the central nervous system (CNS). Multiple genetic predispositions and environmental factors are known to influence the immune response in autoimmune diseases, such as MS, and in the experimental autoimmune encephalomyelitis (EAE) model. Although the predisposition to suffer from MS seems to be a multifactorial process, a highly sensitive period is pregnancy due to factors that alter the development and differentiation of the CNS and the immune system, which increases the offspring's susceptibility to develop MS. In this regard, there is evidence that thyroid hormone deficiency during gestation, such as hypothyroidism or hypothyroxinemia, may increase susceptibility to autoimmune diseases such as MS. In this review, we discuss the relevance of the gestational period for the development of MS in adulthood.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Sistema Nervioso Central , Femenino , Esclerosis Múltiple/etiología , Vaina de Mielina , Embarazo , Factores de Riesgo
6.
Immunology ; 163(3): 262-277, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33638192

RESUMEN

Orthohantaviruses, previously named hantaviruses, cause two emerging zoonotic diseases: haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Overall, over 200 000 cases are registered every year worldwide, with a fatality rate ranging between 0·1% and 15% for HFRS and between 20% and 40% for HCPS. No specific treatment or vaccines have been approved by the U.S. Food and Drug Administration (FDA) to treat or prevent hantavirus-caused syndromes. Currently, little is known about the mechanisms at the basis of hantavirus-induced disease. However, it has been hypothesized that an excessive inflammatory response plays an essential role in the course of the disease. Furthermore, the contributions of the cellular immune response to either viral clearance or pathology have not been fully elucidated. This article discusses recent findings relative to the immune responses elicited to hantaviruses in subjects suffering HFRS or HCPS, highlighting the similarities and differences between these two clinical diseases. Also, we summarize the most recent data about the cellular immune response that could be important for designing new vaccines to prevent this global public health problem.


Asunto(s)
Infecciones por Hantavirus/inmunología , Orthohantavirus/fisiología , Vacunas Virales/inmunología , Animales , Paro Cardíaco , Fiebre Hemorrágica con Síndrome Renal , Humanos , Inmunidad Celular , Ratones , Zoonosis Virales
7.
Brain Behav Immun ; 91: 159-171, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979471

RESUMEN

The human respiratory syncytial virus (hRSV) is the most common infectious agent that affects children before two years of age. hRSV outbreaks cause a significant increase in hospitalizations during the winter season associated with bronchiolitis and pneumonia. Recently, neurologic alterations have been associated with hRSV infection in children, which include seizures, central apnea, and encephalopathy. Also, hRSV RNA has been detected in cerebrospinal fluids (CSF) from patients with neurological symptoms after hRSV infection. Additionally, previous studies have shown that hRSV can be detected in the lungs and brains of mice exposed to the virus, yet the potential effects of hRSV infection within the central nervous system (CNS) remain unknown. Here, using a murine model for hRSV infection, we show a significant behavior alteration in these animals, up to two months after the virus exposure, as shown in marble-burying tests. hRSV infection also produced the expression of cytokines within the brain, such as IL-4, IL-10, and CCL2. We found that hRSV infection alters the permeability of the blood-brain barrier (BBB) in mice, allowing the trespassing of macromolecules and leading to increased infiltration of immune cells into the CNS together with an increased expression of pro-inflammatory cytokines in the brain. Finally, we show that hRSV infects murine astrocytes both, in vitro and in vivo. We identified the presence of hRSV in the brain cortex where it colocalizes with vWF, MAP-2, Iba-1, and GFAP, which are considered markers for endothelial cells, neurons, microglia, and astrocyte, respectively. hRSV-infected murine astrocytes displayed increased production of nitric oxide (NO) and TNF-α. Our results suggest that hRSV infection alters the BBB permeability to macromolecules and immune cells and induces CNS inflammation, which can contribute to the behavioral alterations shown by infected mice. A better understanding of the neuropathy caused by hRSV could help to reduce the potential detrimental effects on the CNS in hRSV-infected patients.


Asunto(s)
Virus Sincitial Respiratorio Humano , Animales , Astrocitos , Barrera Hematoencefálica , Sistema Nervioso Central , Células Endoteliales , Humanos , Inflamación , Pulmón , Ratones , Permeabilidad
8.
Pharmacol Res ; 166: 105479, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33549728

RESUMEN

Astaxanthin is a natural C40 carotenoid with numerous reported biological functions, most of them associated with its antioxidant and anti-inflammatory activity, standing out from other antioxidants as it has shown the highest oxygen radical absorbance capacity (ORAC), 100-500 times higher than ⍺-tocopherol and a 10 times higher free radical inhibitory activity than related antioxidants (α-tocopherol, α-carotene, ß -carotene, lutein and lycopene). In vitro and in vivo studies have associated astaxanthin's unique molecular features with several health benefits, including neuroprotective, cardioprotective and antitumoral properties, suggesting its therapeutic potential for the prevention or co-treatment of dementia, Alzheimer, Parkinson, cardiovascular diseases and cancer. Benefits on skin and eye health promotion have also been reported, highlighting its potential for the prevention of skin photo-aging and the treatment of eye diseases like glaucoma, cataracts and uveitis. In this review, we summarize and discuss the currently available evidence on astaxanthin benefits, with a particular focus on human clinical trials, including a brief description of the potential mechanisms of action responsible for its biological activities.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Descubrimiento de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Xantófilas/farmacocinética , Xantófilas/farmacología , Xantófilas/uso terapéutico
9.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360716

RESUMEN

Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Consumo de Oxígeno , Virosis/metabolismo , Replicación Viral , Virus/metabolismo , Hipoxia de la Célula , Humanos , Virosis/patología
10.
J Immunol ; 199(1): 212-223, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28566367

RESUMEN

Human respiratory syncytial virus (hRSV) is the leading cause of severe lower respiratory tract infections in children. The development of novel prophylactic and therapeutic antiviral drugs against hRSV is imperative to control the burden of disease in the susceptible population. In this study, we examined the effects of inducing the activity of the host enzyme heme oxygenase-1 (HO-1) on hRSV replication and pathogenesis on lung inflammation induced by this virus. Our results show that after hRSV infection, HO-1 induction with metalloporphyrin cobalt protoporphyrin IX significantly reduces the loss of body weight due to hRSV-induced disease. Further, HO-1 induction also decreased viral replication and lung inflammation, as evidenced by a reduced neutrophil infiltration into the airways, with diminished cytokine and chemokine production and reduced T cell function. Concomitantly, upon cobalt protoporphyrin IX treatment, there is a significant upregulation in the production of IFN-α/ß mRNAs in the lungs. Furthermore, similar antiviral and protective effects occur by inducing the expression of human HO-1 in MHC class II+ cells in transgenic mice. Finally, in vitro data suggest that HO-1 induction can modulate the susceptibility of cells, especially the airway epithelial cells, to hRSV infection.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Pulmón/inmunología , Infecciones por Virus Sincitial Respiratorio/fisiopatología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Animales , Línea Celular , Citocinas/biosíntesis , Citocinas/inmunología , Replicación del ADN , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/genética , Humanos , Interferón-alfa/biosíntesis , Interferón-alfa/inmunología , Interferón beta/inmunología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Ratones , Protoporfirinas/administración & dosificación , Protoporfirinas/farmacología , Infecciones por Virus Sincitial Respiratorio/inmunología , Linfocitos T/inmunología , Acoplamiento Viral , Internalización del Virus , Replicación Viral
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 639-650, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29571767

RESUMEN

We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration.


Asunto(s)
Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Enfermedad de Parkinson/metabolismo , Fosfolipasa D/biosíntesis , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Mutación con Ganancia de Función , Humanos , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosfolipasa D/genética , alfa-Sinucleína/genética
12.
Am J Pathol ; 187(3): 487-493, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28082120

RESUMEN

Heme oxygenase-1 (HO-1) is a stress-inducible, anti-inflammatory, and cytoprotective enzyme expressed in most cell types in the organism. Under several stress stimuli, HO-1 expression and activity is up-regulated to catalyze the rate-limiting enzymatic step of heme degradation into carbon monoxide, free iron, and biliverdin. Besides its effects on cell metabolism, HO-1 is also capable of modulating host innate and adaptive immune responses in response to sepsis, transplantation, and autoimmunity, and preventing oxidative damage associated with inflammation. In addition, recent studies have reported that HO-1 can exert a significant antiviral activity against a wide variety of viruses, including HIV, hepatitis C virus, hepatitis B virus, enterovirus 71, influenza virus, respiratory syncytial virus, dengue virus, and Ebola virus, among others. Herein, we address the current understanding of the functional significance of HO-1 against a variety of viruses and its potential as a therapeutic strategy to prevent and control viral infections. Furthermore, we review the most important features of the immunoregulatory functions for this enzyme.


Asunto(s)
Antivirales/farmacología , Hemo-Oxigenasa 1/metabolismo , Inmunidad/efectos de los fármacos , Animales , Hemo/metabolismo , Humanos , Modelos Biológicos
13.
Immunology ; 147(1): 55-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26451966

RESUMEN

Human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization related to respiratory disease. Infection with hRSV produces abundant infiltration of immune cells into the airways, which combined with an exacerbated pro-inflammatory immune response can lead to significant damage to the lungs. Human RSV re-infection is extremely frequent, suggesting that this virus may have evolved molecular mechanisms that interfere with host adaptive immunity. Infection with hRSV can be reduced by administering a humanized neutralizing antibody against the virus fusion protein in high-risk infants. Although neutralizing antibodies against hRSV effectively block the infection of airway epithelial cells, here we show that both, bone marrow-derived dendritic cells (DCs) and lung DCs undergo infection with IgG-coated virus (hRSV-IC), albeit abortive. Yet, this is enough to negatively modulate DC function. We observed that such a process is mediated by Fcγ receptors (FcγRs) expressed on the surface of DCs. Remarkably, we also observed that in the absence of hRSV-specific antibodies FcγRIII knockout mice displayed significantly less cellular infiltration in the lungs after hRSV infection, compared with wild-type mice, suggesting a potentially harmful, IgG-independent role for this receptor in hRSV disease. Our findings support the notion that FcγRs can contribute significantly to the modulation of DC function by hRSV and hRSV-IC. Further, we provide evidence for an involvement of FcγRIII in the development of hRSV pathogenesis.


Asunto(s)
Células Dendríticas/metabolismo , Pulmón/metabolismo , Activación de Linfocitos , Receptores de IgG/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/patogenicidad , Linfocitos T/metabolismo , Inmunidad Adaptativa , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Antivirales/farmacología , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Modelos Animales de Enfermedad , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Palivizumab/farmacología , Receptores de IgG/deficiencia , Receptores de IgG/genética , Receptores de IgG/inmunología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/inmunología , Transducción de Señal , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/virología , Carga Viral , Replicación Viral
14.
Semin Respir Crit Care Med ; 37(4): 522-37, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27486734

RESUMEN

The human respiratory syncytial virus (hRSV) is by far the major cause of acute lower respiratory tract infections (ALRTIs) worldwide in infants and children younger than 2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV infection is considered a major public health problem and economic burden in most countries. The lung pathology developed in hRSV-infected individuals is characterized by an exacerbated proinflammatory and unbalanced Th2-type immune response. In addition to the adverse effects in airway tissues, hRSV infection can also cause neurologic manifestations in the host, such as seizures and encephalopathy. Although the origins of these extrapulmonary symptoms remain unclear, studies with patients suffering from neurological alterations suggest an involvement of the inflammatory response against hRSV. Furthermore, hRSV has evolved numerous mechanisms to modulate and evade the immune response in the host. Several studies have focused on elucidating the interactions between hRSV virulence factors and the host immune system, to rationally design new vaccines and therapies against this virus. Here, we discuss about the infection, pathology, and immune response triggered by hRSV in the host.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Evasión Inmune , Lactante , Recién Nacido , Pulmón/patología , Pulmón/virología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitial Respiratorio Humano/inmunología , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología
15.
J Virol ; 88(17): 10026-38, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942591

RESUMEN

UNLABELLED: Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvß3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvß3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvß3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvß3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. IMPORTANCE: Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These epidemiological findings underscore the urgency to develop novel HSV treatment or prevention strategies. This study addresses this gap by further defining the signaling pathways the virus usurps to enter human genital tract epithelial cells. Specifically, the study defines the role played by integrins and by the viral envelope glycoprotein H in entry and cell-to-cell spread. This knowledge will facilitate the identification of new targets for the development of treatment and prevention.


Asunto(s)
Señalización del Calcio , Células Epiteliales/virología , Herpesvirus Humano 2/fisiología , Interacciones Huésped-Patógeno , Integrina alfaVbeta3/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Células Cultivadas , Células Epiteliales/fisiología , Femenino , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Herpesvirus Humano 2/genética , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas del Envoltorio Viral/genética
16.
Med Microbiol Immunol ; 204(2): 161-76, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25209142

RESUMEN

Infection with herpes simplex viruses is one of the most ancient diseases described to affect humans. Infection with these viruses produces vexing effects to the host, which frequently recur. Infection with herpes simplex viruses is lifelong, and currently there is no vaccine or drug to prevent or cure infection. Prevalence of herpes simplex virus 2 (HSV-2) infection varies significantly depending on the geographical region and nears 20% worldwide. Importantly, HSV-2 is the first cause of genital ulcers in the planet. HSV-2 affects approximately 500 million people around the globe and significantly increases the likelihood of acquiring the human immunodeficiency virus (HIV), as well as its shedding. Thus, controlling HSV-2 infection and spread is of public health concern. Here, we review the diseases produced by herpes simplex viruses, the factors that modulate HSV-2 infection, the relationship between HSV-2 and HIV and novel therapeutic and prophylactic microbicides/antivirals under development to prevent infection and pathological outcomes produced by this virus. We also review mutations associated with HSV-2 resistance to common antivirals.


Asunto(s)
Antiinfecciosos/uso terapéutico , Quimioprevención/métodos , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Herpes Genital/complicaciones , Herpes Genital/tratamiento farmacológico , Herpesvirus Humano 2/aislamiento & purificación , Antiinfecciosos/aislamiento & purificación , Descubrimiento de Drogas/tendencias , Herpes Genital/virología , Humanos
17.
Rev Med Virol ; 24(6): 407-19, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25316031

RESUMEN

Worldwide, the human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization because of acute respiratory tract infections, including severe bronchiolitis and pneumonia. Despite intense research, to date there is neither vaccine nor treatment available to control hRSV disease burden globally. After infection, an incubation period of 3-5 days is usually followed by symptoms, such as cough and low-grade fever. However, hRSV infection can also produce a larger variety of symptoms, some of which relate to the individual's age at infection. Indeed, infants can display severe symptoms, such as dyspnea and chest wall retractions. Upon examination, crackles and wheezes are also common features that suggest infection by hRSV. Additionally, infection in infants younger than 1 year is associated with several non-specific symptoms, such as failure to thrive, periodic breathing or apnea, and feeding difficulties that usually require hospitalization. Recently, neurological symptoms have also been associated with hRSV respiratory infection and include seizures, central apnea, lethargy, feeding or swallowing difficulties, abnormalities in muscle tone, strabismus, abnormalities in the CSF, and encephalopathy. Here, we discuss recent findings linking the neurological, extrapulmonary effects of hRSV with infection and functional impairment of the CNS.


Asunto(s)
Enfermedades del Sistema Nervioso Central/etiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Virus Sincitial Respiratorio Humano/fisiología , Animales , Enfermedades del Sistema Nervioso Central/virología , Humanos , Infecciones por Virus Sincitial Respiratorio/virología
18.
Mediators Inflamm ; 2015: 593757, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25918478

RESUMEN

Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency.


Asunto(s)
Antivirales/química , Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Animales , Apoptosis , Supervivencia Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Epiteliales/virología , Herpes Simple/inmunología , Humanos , Inmunidad Innata , Interferones/metabolismo , Neuronas/metabolismo , Neuronas/virología , Transducción de Señal , Replicación Viral
19.
Vaccines (Basel) ; 12(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38675736

RESUMEN

Immunosenescence refers to age-related alterations in immune system function affecting both the humoral and cellular arm of immunity. Understanding immunosenescence and its impact on the vaccination of older adults is essential since primary vaccine responses in older individuals can fail to generate complete protection, especially vaccines targeting infections with increased incidence among the elderly, such as the respiratory syncytial virus. Here, we review clinical trials of both candidate and approved vaccines against respiratory syncytial virus (RSV) that include adults aged ≥50 years, with an emphasis on the evaluation of immunogenicity parameters. Currently, there are 10 vaccine candidates and 2 vaccines approved for the prevention of RSV in the older adult population. The number of registered clinical trials for this age group amounts to 42. Our preliminary evaluation of published results and interim analyses of RSV vaccine clinical trials indicates efficacy in older adult participants, demonstrating immunity levels that closely resemble those of younger adult participants.

20.
Front Immunol ; 15: 1341600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482000

RESUMEN

The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Pandemias , Cinética , Infección Persistente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA