Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Ecotoxicol Environ Saf ; 232: 113213, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085885

RESUMEN

Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. ß-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere.


Asunto(s)
Plásticos , Agua de Mar , Bacterias/genética , ARN Ribosómico 16S/genética , Ríos , Agua de Mar/microbiología
2.
Sci Rep ; 14(1): 11089, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750101

RESUMEN

This investigation explored the presence of microplastics (MPs) and artificial cellulosic particles (ACPs) in commercial water marketed in single use 1.5 L poly(ethylene terephthalate) bottles. In this work we determined a mass concentration of 1.61 (1.10-2.88) µg/L and 1.04 (0.43-1.82) µg/L for MPs and ACPs respectively in five top-selling brands from the Spanish bottled water market. Most MPs consisted of white and transparent polyester and polyethylene particles, while most ACPs were cellulosic fibers likely originating from textiles. The median size of MPs and ACPs was 93 µm (interquartile range 76-130 µm) and 77 µm (interquartile range 60-96 µm), respectively. Particle mass size distributions were fitted to a logistic function, enabling comparisons with other studies. The estimated daily intake of MPs due to the consumption of bottled water falls within the 4-18 ng kg-1 day-1 range, meaning that exposure to plastics through bottled water probably represents a negligible risk to human health. However, it's worth noting that the concentration of plastic found was much higher than that recorded for tap water, which supports the argument in favour of municipal drinking water.


Asunto(s)
Agua Potable , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Agua Potable/química , Agua Potable/análisis , España , Contaminantes Químicos del Agua/análisis , Celulosa/química , Celulosa/análisis , Humanos , Tamaño de la Partícula , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/análisis
3.
Sci Total Environ ; 913: 169678, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159775

RESUMEN

The number of studies dealing with airborne microplastics (MPs) is increasing but sampling and sample treatment are not standardized, yet. Here, a fast and reliable method to characterize MPs is presented. It involves the study of two passive sampling devices to collect atmospheric bulk deposition (wet and dry deposition) and three digestion methods (two alkaline-oxidative and an oxidative) to treat the samples. The alkaline-oxidative method based on KOH and NaClO was selected for a mild organic matrix digestion. In addition, some operational parameters of a high-throughput quantum cascade laser-based infrared device (LDIR) were optimized: an effective automatic tiered approach to differentiate fibres from particles (>90 % success in validation) and a criterion to establish positive matches when comparing an unknown spectrum against the spectral database (proposed match index > 0.85). The procedural analytical recoveries were very good for particles (82-90 %) and slightly lower for fibres (62-73 %). Finally, the amount and type of MPs deposited at a sub-urban area NW Spain were evaluated. Most common polymers were Polyethylene (PE), Polypropylene (PP) and Polyethylene terephthalate (PET). The deposition rates ranged 98-1220 MP/m2/day, ca. 1.7 % of the total collected particles. More than 50 % of the total MPs deposited were in the 20-50 µm size range, whereas fibres were mostly in the 50-500 µm size range.

4.
Sci Total Environ ; 917: 170604, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38309362

RESUMEN

The pollution due to plastic and other anthropogenic particles has steadily increased over the last few decades, presenting a significant threat to the environment and organisms, including avian species. This research aimed to investigate the occurrence of anthropogenic pollutants in the digestive and respiratory systems of four birds of prey: Common Buzzard (Buteo buteo), Black Kite (Milvus migrans), Eurasian Sparrowhawk (Accipiter nisus), and Northern Goshawk (Accipiter gentilis). The results revealed widespread contamination in all species with microplastics (MPs) and cellulosic anthropogenic fibers (AFs), with an average of 7.9 MPs and 9.2 AFs per specimen. Every digestive system contained at least one MP, while 65 % of specimens exhibited MPs in their respiratory systems. This is the work reporting a high incidence of MPs in the respiratory system of birds, clearly indicating inhalation as a pathway for exposure to plastic pollution. The content of MPs and AFs varied significantly when comparing specimens collected from central Madrid with those recovered from other parts of the region, including rural environments, suburban areas, or less populated cities. This result aligns with the assumption that anthropogenic particles disperse from urban centers to surrounding areas. Additionally, the dominant particle shape consisted of small-sized fibers (> 98 %), primarily composed of polyester, polyethylene, acrylic materials, and cellulose fibers exhibiting indicators of industrial treatment. These findings emphasize the necessity for further research on the impact of plastic and other anthropogenic material contamination in avian species, calling for effective strategies to mitigate plastic pollution.


Asunto(s)
Águilas , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Polietilenos , Ciudades , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
5.
Chemosphere ; 326: 138475, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958502

RESUMEN

Farmlands represent a source of aged plastics and pesticides to the surrounding environments. It has been shown that chemicals can be sorbed and desorbed from plastics, but the interaction between plastic and mixtures of pesticides and their effects on freshwater biota has not been assessed yet. The aim of the work was to assess the potential role of agricultural plastics as vectors for a mixture of two herbicides and the impact of the herbicide mixture lixiviated from them towards the freshwater microalga Chlamydomonas reinhardtii. Pristine and aged polyethylene plastics collected from agricultural areas were exposed to the herbicides, bifenox, oxyfluorfen and their mixtures. The microalgae were exposed for 72 h to the leachates desorbed from plastics and the effect was quantified in terms of total chlorophyll content and several physiological parameters assessed by flow cytometry. Our results showed that changes in physicochemical properties (hydroxyl and carbonyl index, hydrophobicity, texture) in aged plastics increased their capacity to retain and to desorb the herbicides. Microalgae exposed to leachates containing bifenox, oxyfluorfen, or their mixture showed reactive oxygen species overproduction, lipid peroxidation, membrane potential hyperpolarization, intracellular pH acidification, and a loss of metabolic activity. The toxicological interactions of the leachate mixture were assessed using the Combination Index (CI)-isobologram method showing antagonism at low effect levels turning to synergism when the effect increased. In this work, we proved the hypothesis that ageing increases the capacity of agricultural plastics to behave as vector for toxic chemicals to the biota.


Asunto(s)
Herbicidas , Microalgas , Plaguicidas , Contaminantes Químicos del Agua , Herbicidas/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Éteres Difenilos Halogenados/farmacología , Plaguicidas/farmacología
6.
Sci Total Environ ; 873: 162276, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801317

RESUMEN

Human activities have introduced high amounts of microplastics (MPs) into the atmosphere that can be transported long distances and be later deposited in terrestrial and aquatic ecosystems with precipitation (rain or snow). In this work, it has been assessed the presence of MPs in the snow of El Teide National Park (Tenerife, Canary Islands, Spain, 2150-3200 m above sea level) after two storm episodes (January-February 2021). The data set (63 samples) was divided into three groups: i) samples from "accessible areas" (after the first storm episode and in places with a strong previous/recent anthropogenic activity); ii) "pristine areas" (after the second storm episode, in places with no previous anthropogenic activity), and iii) "climbing areas" (after the second storm episode, in places with a soft recent anthropogenic activity). Similar pattern profiles were observed among sampling sites in terms of morphology, colour and size (predominance of blue and black microfibers of 250-750 µm length), as well as in composition (predominance of cellulosic -either natural or semisynthetic-, with a 62.7 %, polyester, 20.9 %, and acrylic, 6.3 %, microfibers); however, significant differences in MPs concentrations were found between samples collected in pristine areas (average concentration of 51 ± 72 items/L) and those obtained in places with a previous anthropogenic activity (average concentration of 167 ± 104 and 188 ± 164 items/L in "accessible areas" and "climbing areas", respectively). This study shows, for the first time, the presence of MPs in snow samples from a high altitude protected area on an insular territory and suggests that the sources of these contaminants could be atmospheric transport and local human outdoor activities.

7.
Sci Total Environ ; 859(Pt 1): 160231, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36402321

RESUMEN

This study aimed at evaluating the influence of biofilm in the role of microplastics (MPs) as vectors of pollutants and their impact on Daphnia magna. To do this, virgin polyethylene MPs, (PE-MPs, 40-48 µm) were exposed for four weeks to wastewater (WW) from influent and effluent to promote biofouling. Then, the exposed PE-MPs were put in contact with triclosan. Finally, the toxicity of TCS-loaded and non-TCS loaded PE-MPs were tested on the survival of D. magna adults for 21 days. Results from metabarcoding analyses indicated that exposure to TCS induced shifts in the bacterial community, selecting potential TCS-degrading bacteria. Results also showed that PE-MPs were ingested by daphnids. The most toxic virgin PE-MPs were those biofouled in the WW effluent. The toxicity of TCS-loaded PE-MPs biofouled in the WW effluent was even higher, reporting mortality in all tested concentrations. These results indicate that biofouling of MPs may modulate the adsorption and subsequent desorption of co-occurring pollutants, hence affecting their potential toxicity towards aquatic organisms. Future studies on realistic environmental plastic impact should include the characterization of biofilms growing on plastic. Since inevitably plastic biofouling occurs over time in nature, it should be taken into account as it may modulate the sorption of co-occurring pollutants.


Asunto(s)
Contaminantes Ambientales , Triclosán , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno , Triclosán/toxicidad , Triclosán/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales/análisis
8.
J Hazard Mater ; 443(Pt B): 130271, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36351347

RESUMEN

The plastisphere has been widely studied in the oceans; however, there is little information on how living organisms interact with the plastisphere in freshwater ecosystems, and particularly on how this interaction changes over time. We have characterized, over one year, the evolution of the eukaryotic and bacterial communities colonizing four everyday plastic items deployed in two sites of the same river with different anthropogenic impact. α-diversity analyses showed that site had a significant role in bacterial and eukaryotic diversity, with the most impacted site having higher values of the Shannon diversity index. ß-diversity analyses showed that site explained most of the sample variation followed by substrate type (i.e., plastic item) and time since first colonization. In this regard, core microbiomes/biomes in each plastic at 1, 3, 6 and 12 months could be identified at genus level, giving a global overview of the evolution of the plastisphere over time. The measured concentration of antibiotics in the river water positively correlated with the abundance of antibiotic resistance genes (ARGs) on the plastics. These results provide relevant information on the temporal dynamics of the plastisphere in freshwater ecosystems and emphasize the potential contribution of plastic items to the global spread of antibiotic resistance.


Asunto(s)
Microbiota , Plásticos , Plásticos/análisis , Antibacterianos/farmacología , Ríos , Farmacorresistencia Microbiana/genética , Microbiota/genética , Biopelículas , Genes Bacterianos
9.
J Hazard Mater ; 445: 130625, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056024

RESUMEN

In this work, we used palladium-doped polystyrene NPLs (PS-NPLs with a primary size of 286 ± 4 nm) with an irregular surface morphology which allowed for particle tracking and evaluation of their toxicity on two primary producers (cyanobacterium, Anabaena sp. PCC7120 and green algae, Chlamydomonas reinhardtii) and one primary consumer (crustacean, Daphnia magna). the concentration range for Anabaena and C. reinhardtii was from 0.01 to 1000 mg/L and for D. magna, the range was from 7.5 to 120 mg/L.EC50 s ranged from 49 mg NPLs/L for D. magna (48hEC50 s) to 248 mg NPLs/L (72hEC50 s for C. reinhardtii). PS-NPLs induced dose-dependent reactive oxygen species overproduction, membrane damage and metabolic alterations. To shed light on the environmental fate of PS-NPLs, the short-term distribution of PS-NPLs under static (using lake water and sediments) and stirring (using river water and sediments) conditions was studied at laboratory scale. The results showed that most NPLs remained in the water column over the course of 48 h. The maximum percentage of settled particles (∼ 30 %) was found under stirring conditions in comparison with the ∼ 10 % observed under static ones. Natural organic matter increased the stability of the NPLs under colloidal state while organisms favored their settlement. This study expands the current knowledge of the biological effects and fate of NPLs in freshwater environments.


Asunto(s)
Organismos Acuáticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Poliestirenos/metabolismo , Agua Dulce , Daphnia , Agua/farmacología , Contaminantes Químicos del Agua/metabolismo
10.
Water Res ; 238: 120044, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37156103

RESUMEN

The purpose of this study was to investigate the occurrence of microplastics (MPs) in drinking water in Spain by comparing tap water from different locations using common sampling and identification procedures. We sampled tap water from 24 points in 8 different locations from continental Spain and the Canary Islands by means of 25 µm opening size steel filters coupled to household connections. All particles were measured and spectroscopically characterized including not only MPs but also particles consisting of natural materials with evidence of industrial processing, such as dyed natural fibres, referred insofar as artificial particles (APs). The average concentration of MPs was 12.5 ± 4.9 MPs/m3 and that of anthropogenic particles 32.2 ± 12.5 APs/m3. The main synthetic polymers detected were polyamide, polyester, and polypropylene, with lower counts of other polymers including the biopolymer poly(lactic acid). Particle size and mass distributions were parameterized by means of power law distributions, which allowed performing estimations of the concentration of smaller particles provided the same scaling parameter of the power law applies. The calculated total mass concentration of the identified MPs was 45.5 ng/L. The observed size distribution of MPs allowed an estimation for the concentration of nanoplastics (< 1 µm) well below the ng/L range; higher concentrations are not consistent with scale invariant fractal fragmentation. Our findings showed that MPs in the drinking water sampled in this work do not represent a significant way of exposure to MPs and would probably pose a negligible risk for human health.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Agua Potable/análisis , España , Ciudades , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Polímeros
11.
Sci Total Environ ; 905: 166923, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37704133

RESUMEN

Plastic production continues to increase every year, yet it is widely acknowledged that a significant portion of this material ends up in ecosystems as microplastics (MPs). Among all the environmental compartments affected by MPs, the atmosphere remains the least well-known. Here, we conducted a one-year simultaneous monitoring of atmospheric MPs deposition in ten urban areas, each with different population sizes, economic activities, and climates. The objective was to assess the role of the atmosphere in the fate of MPs by conducting a nationwide quantification of atmospheric MP deposition. To achieve this, we deployed collectors in ten different urban areas across continental Spain and the Canary Islands. We implemented a systematic sampling methodology with rigorous quality control/quality assurance, along with particle-oriented identification and quantification of anthropogenic particle deposition, which included MPs and industrially processed natural fibres. Among the sampled MPs, polyester fibres were the most abundant, followed by acrylic polymers, polypropylene, and alkyd resins. Their equivalent sizes ranged from 22 µm to 398 µm, with a median value of 71 µm. The particle size distribution of MPs showed fewer large particles than expected from a three-dimensional fractal fragmentation pattern, which was attributed to the higher mobility of small particles, especially fibres. The atmospheric deposition rate of MPs ranged from 5.6 to 78.6 MPs m-2 day-1, with the higher values observed in densely populated areas such as Barcelona and Madrid. Additionally, we detected natural polymers, mostly cellulosic fibres with evidence of industrial processing, with a deposition rate ranging from 6.4 to 58.6 particles m-2 day-1. There was a positive correlation was found between the population of the study area and the median of atmospheric MP deposition, supporting the hypothesis that urban areas act as sources of atmospheric MPs. Our study presents a systematic methodology for monitoring atmospheric MP deposition.

12.
Sci Total Environ ; 827: 154438, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35276161

RESUMEN

The generation of small fragments from the environmental ageing of microplastics (MPs) is still a poorly known process. This work addresses the fragmentation of MPs obtained from marine debris consisting of polyethylene and polypropylene (PE and PP in environmental mixture) and polystyrene (PS) after exposure to accelerated ageing by irradiation and mechanical stirring. Number particle size distribution in the 1-100 µm range was assessed by combining laser diffractometry with particle counts from flow cytometry. The results showed the generation of a high number of small MP particles, which reached 105-106 items/mg of plastic with most fragments <2 µm. The results showed that environmentally aged MPs give rise to a larger number of small MPs in a pattern consistent with progressive fragmentation in the three spatial dimensions. The proportion of small MPs was much higher than that found in current sampling campaigns, suggesting a severe underestimation of the environmental presence of small MPs. We also demonstrated the generation of nanoplastics (NPs) in the fraction <1 µm from irradiated runs. The results showed that the mechanism that produced nanoplastics (NPs) from MPs was irradiation, which yielded up to 1011-1013 NPs/g with particle size in the few hundreds of nm range. Our results are relevant for the assessment of fate and risk of plastic debris in the environment showing that the number of small plastic fragments produced during the ageing of MPs is much larger than expect from the extrapolation of larger size populations.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos , Polietileno , Contaminantes Químicos del Agua/análisis
13.
Chemosphere ; 303(Pt 1): 134966, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35588878

RESUMEN

Bioplastics are thought as a safe substitute of non-biodegradable polymers. However, once released in the environment, biodegradation may be very slow, and they also suffer abiotic fragmentation processes, which may give rise to different fractions of polymer sizes. We present novel data on abiotic hydrolytic degradation of polycaprolactone (PCL), tracking the presence of by-products during 132 days by combining different physicochemical techniques. During the study a considerable amount of two small size plastic fractions were found (up to âˆ¼ 6 mg of PCL by-product/g of PCL beads after 132 days of degradation); and classified as submicron-plastics (sMPs) from 1 µm to 100 nm and nanoplastics (NPs, <100 nm) as well as oligomers. The potential toxicity of the smallest fractions, PCL by-products < 100 nm (PCL-NPs + PCL oligomers) and the PCL oligomers single fraction, was tested on two ecologically relevant aquatic primary producers: the heterocystous filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, and the unicellular cyanobacterium Synechococcus sp. PCC 7942. Upon exposure to both, single and combined fractions, Reactive Oxygen Species (ROS) overproduction, intracellular pH and metabolic activity alterations were observed in both organisms, whilst membrane potential and morphological damages were only observed upon PCL-NPs + PCL oligomers exposure. Notably both PCL by-products fractions inhibited nitrogen fixation in Anabaena, which may be clearly detrimental for the aquatic trophic chain. As conclusion, fragmentation of bioplastics may render a continuous production of secondary nanoplastics as well as oligomers that might be toxic to the surrounding biota; both PCL-NPs and PCL oligomers, but largely the nanoparticulate fraction, were harmful for the two aquatic primary producers. Efforts should be made to thoroughly understand the fragmentation of bioplastics and the toxicity of the smallest fractions resulting from that degradation.


Asunto(s)
Anabaena , Cianobacterias , Contaminantes Químicos del Agua , Biodegradación Ambiental , Microplásticos , Plásticos , Poliésteres , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
J Hazard Mater ; 438: 129439, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777146

RESUMEN

Microplastics (MPs) have been detected in all environmental locations, including the atmosphere. However, few studies have investigated the presence of airborne MPs in the human respiratory system. Our research purpose was to investigate these pollutants in the lower human airways of 44 adult European citizens, using bronchoalveolar lavage fluid (BALF) collection as a minimally invasive method, that enables the detection of these pollutants in living patients. We studied the relationship between the patients' life habits and physiological parameters, based on background information and medical and occupational history, and the concentration of MPs isolated from their respiratory systems. Our results indicate that most MPs were in the form of microfibers (MFs) (97.06%), with an average concentration of 9.18 ± 2.45 items/100 mL BALF, and only 5.88% (0.57 ± 0.27 items/100 mL BALF) were particulate MPs, without a significant relationship with environmental, physiological, or clinical factors. The average size was 1.73 ± 0.15 mm, with the longest dimension (9.96 mm) corresponding to a polyacrylic fiber. Taken together, the results demonstrated the occurrence of MPs in the lower human airway, although more studies are necessary to elucidate the negative effects these pollutants could induce in the human respiratory system and its associated diseases.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Adulto , Monitoreo del Ambiente/métodos , Humanos , Microplásticos/toxicidad , Plásticos , Sistema Respiratorio , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 817: 152830, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016926

RESUMEN

In this work, the occurrence of microplastics (MPs) in irrigation recycled wastewaters (RWWs) and a desalinated brackish water (DBW) from the arid territory of Fuerteventura (Canary Islands, Spain) was studied. Besides, the presence of MPs in two types of soils (sandy-loam and clay-loamy; with no mulch film or fertilization with sewage sludge applied) irrigated with both water qualities was addressed. Results showed the prevalence presence of cellulosic and polyester microfibers (between 84.4 and 100%) of blue and transparent colors (up to 55.6 and 33.3%, respectively), with an average length of 786.9 ± 812.1 µm in the water samples. DBW had the lowest MP concentration (2.0 ± 2.0 items·L-1) while RWW showed concentrations up to 40.0 ± 19.0 items·L-1. Similarities were also observed between the MPs types and sizes found in both soils top layer (0-5 cm), with an average concentration three times greater in soil irrigated with RWW than in soil under DBW irrigation (159 ± 338 vs. 46 ± 92 items·kg-1, respectively). In addition, no MPs were extracted from non-irrigated/non-cultivated soils, suggesting agricultural activities as the unique source of MPs in soils of this arid area. Results show that RWWs constitute a potential source of MPs in irrigated soils that should be considered among other pros and cons linked to the use of this water quality in agricultural arid lands.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Riego Agrícola , Plásticos , Suelo , Contaminantes del Suelo/análisis , España , Aguas Residuales
16.
Polymers (Basel) ; 14(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631814

RESUMEN

Microplastic pollution has an extremely widespread distribution, to the extent that microplastics could be ingested by aquatic organisms, including species of commercial importance for fisheries and aquaculture. In this work, the anthropogenic particles content of the gastrointestinal tracts of 86 individuals of cultivated European sea bass (Dicentrarchus labrax, n = 45) and gilt-head sea bream (Sparus aurata, n = 41) from Tenerife (Canary Islands, Spain) was determined. Samples were bought at local markets and directly transported to the laboratory. After the dissection of the fishes and digestion of the gastrointestinal tracts in 10% KOH (w/v) at 60 °C for 24 h, the digests were filtered (50 µm stainless-steel mesh) and visualized under a stereomicroscope, finding that most of the items were colourless (47.7% for Dicentrarchus labrax and 60.9% for Sparus aurata) and blue (35.3% vs. 24.8%) microfibers, with an average length of 1957 ± 1699 µm and 1988 ± 1853 µm, respectively. Moreover, 15.3% of the microfibres were analysed by Fourier transform infrared spectroscopy, showing the prevalence of cellulosic fibres together with polyester, polyacrylonitrile, and poly(ether-urethane). This pattern (microplastics shapes, colours, sizes, and composition) clearly agrees with previous studies carried out in the Canary Islands region regarding the determination of microplastics in the marine environment.

17.
Chemosphere ; 288(Pt 2): 132530, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34653476

RESUMEN

In this work, the microplastic content of sediments collected in July 2020 between 5 and 7 m depth was studied in four locations of La Palma island (Canary Islands, Spain). At each sampling location, three samples were taken parallel to the shoreline. The microplastic content in each sampling corer was studied every 2.5 cm depth after digestion with a H2O2 solution followed by flotation in a saturated NaCl solution. Visualization of the final filtrates under a stereomicroscope revealed that all the sediment samples evaluated contained mostly microfibers (98.3%) which were mainly white/colorless (86.0%) and blue (9.8%), with an average length of 2423 ± 2235 (SD) mm and an average concentration of 2682 ± 827 items per kg of dry weight, being the total number of items found 1,019. Fourier Transform Infrared microscopy analysis of 13.9% (n = 139) of the microfibers also showed that they were mainly cellulosic (81.3%). No significant differences were found between the depths of the sediment. However, significant differences were found between the number of fibers from the sampling sites at the east and west of the island. Such variability could be driven by the winds and ocean mesoscale dynamics in the area. This study confirms the wide distribution of microfibers in sediments from an oceanic island like La Palma, providing their first report in marine sediments of the Canary Islands.


Asunto(s)
Microplásticos , Plásticos , Islas del Atlántico , Peróxido de Hidrógeno , España
18.
Chemosphere ; 266: 129193, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33310522

RESUMEN

Despite the large number of recent studies on microplastics (MPs) and their ability to act as carriers of pollutants, the knowledge about the biological effects of MPs loaded with chemicals is scarce. The aim of this study was to evaluate the potential of MPs as vectors for the antimicrobial triclosan (TCS). For it, we tested low-density polyethylene (LDPE), polyamide (PA), polyethylene terephthalate (PET), polyoxymethylene (POM), polypropylene (PP), polystyrene (PS) and the biodegradable polylactic acid (PLA). Thus, chemical analysis of sorption and desorption of TCS by these MPs was evaluated. The effect of TCS-loaded MPs to Anabaena sp. PCC7120, a cyanobacterium model of primary producers in freshwater ecosystems, was investigated. Chemical analyses showed different capacity of sorption depending on the MP type, which was related to some of their physicochemical properties. PA (104.7 µg/g), POM (57.4 µg/g) and LDPE (18.3 µg/g) were the polymers that sorbed the highest amounts of TCS. Glass transition temperature of polymers and their physicochemical interaction with TCS explained the extent of sorption. Significant decreases were found in growth, 22.3%, 94.6% and 81.0%, and chlorophyll a content, 58.4%, 95.0% and 89.6%, of Anabaena when exposed to TCS-loaded LDPE, PA and POM beads, respectively, which were the only MPs displaying significant sorption-desorption of TCS, implying that these MPs could act as vectors of TCS towards freshwater microalgae. This finding is of fundamental relevance as microalgae are at the base of the aquatic trophic chain and support growth of upper organisms.


Asunto(s)
Desinfectantes , Microalgas , Triclosán , Contaminantes Químicos del Agua , Adsorción , Clorofila A , Ecosistema , Agua Dulce , Microplásticos , Plásticos , Triclosán/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
19.
Sci Total Environ ; 757: 143832, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33246729

RESUMEN

Microbial colonization of microplastics (MPs) in aquatic ecosystems is a well-known phenomenon; however, there is insufficient knowledge of the early colonization phase. Wastewater treatment plant (WWTP) effluents have been proposed as important pathways for MPs entry and transport in aquatic environments and are hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). This study aimed at characterizing bacterial communities in the early stage of biofilm formation on seven different types of MPs deployed in two different WWTPs effluents as well as measuring the relative abundance of two ARGs (sulI and tetM) on the tested MPs. Illumina Miseq sequencing of the 16S rRNA showed significant higher diversity of bacteria on MPs in comparison with free-living bacteria in the WWTP effluents. ß-diversity analysis showed that the in situ environment (sampling site) and hydrophobicity, to a lesser extent, had a role in the early bacterial colonization phase. An early colonization phase MPs-core microbiome could be identified. Furthermore, specific core microbiomes for each type of polymer suggested that each type might select early attachment of bacteria. Although the tested WWTP effluent waters contained antibiotic resistant bacteria (ARBs) harboring the sulI and tetM ARGs, MPs concentrated ARBs harboring the sulI gene but not tetM. These results highlight the relevance of the early attachment phase in the development of bacterial biofilms on different types of MP polymers and the role that different types of polymers might have facilitating the attachment of specific bacteria, some of which might carry ARGs.


Asunto(s)
Microplásticos , Purificación del Agua , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos , Bacterias/genética , Genes Bacterianos , Plásticos , ARN Ribosómico 16S/genética , Aguas Residuales
20.
Mar Pollut Bull ; 166: 112266, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33770553

RESUMEN

The present study is the first evidence-based study about the ingestion of plastic and microplastics in jellyfish Pelagia noctiluca in the North Atlantic Ocean. A bloom of this organism was collected from Gran Canaria Island coast. It was digested using KOH to quantify the plastic particles and by separating the umbrella from tentacles. About 97% of the organisms analysed showed the presence of microdebris. The majority of the microfibers were with blue or uncorrected fibre concentrations and mainly composed of cotton. Their presence in the gastrovascular cavity of the jellyfish was confirmed. These results warn about the impact of various factors such as jellyfish health, the transfer to jellyfish predators, human consumption of jelly fish, and the transport of carbon and microplastics in the water column.


Asunto(s)
Microplásticos , Escifozoos , Animales , Océano Atlántico , Ingestión de Alimentos , Humanos , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA