RESUMEN
miRNAs have been widely identified as important players in cancer development and progression. Metastasis in breast cancer can occur as relapse of a treated primary tumour or at the time of diagnosis of the tumour. The aim of this review is to show if both metastasis are different molecular entities characterised by different miRNA signatures that could be studied as specific biomarkers for each entity. For this, we systematically searched the PubMed, Scopus and Web of Science databases. After searching and reviewing the literature, a total of 30 records were included in this review. Results showed a genetic signature including a total of 5 upregulated miRNAs in metastasis compared with early stages. Of them, miR-23b and miR-200c were exclusively present in relapse metastasis. Finally, we proposed a molecular signature for future studies that can be used as a complementary tool at clinical trials for the diagnosis and characterization of metastasis.
Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , MicroARNs/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica/métodos , Enfermedad Crónica , Recurrencia , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Metástasis de la NeoplasiaRESUMEN
The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.
RESUMEN
We describe a versatile, portable, and simple platform that includes a microfluidic electrochemical immunosensor for prostate-specific antigen (PSA) detection. It is based on the covalent immobilization of the anti-PSA monoclonal antibody on magnetic microbeads retained in the central channel of a microfluidic device. Image flow cytometry and scanning electron microscopy were used to characterize the magnetic microbeads. A direct sandwich immunoassay (with horseradish peroxidase-conjugated PSA antibody) served to quantify the cancer biomarker in serum samples. The enzymatic product was detected at -100 mV by amperometry on sputtered thin-film electrodes. Electrochemical reaction produced a current proportional to the PSA level, with a linear range from 10 pg mL-1 to 1500 pg mL-1. The sensitivity was demonstrated by a detection limit of 2 pg mL-1 and the reproducibility by a coefficient of variation of 6.16%. The clinical performance of this platform was tested in serum samples from patients with prostate cancer (PCa), observing high specificity and full correlation with gold standard determinations. In conclusion, this analytical platform is a promising tool for measuring PSA levels in patients with PCa, offering a high sensitivity and reduced variability. The small platform size and low cost of this quantitative methodology support its suitability for the fast and sensitive analysis of PSA and other circulating biomarkers in patients. Further research is warranted to verify these findings and explore its potential application at all healthcare levels.
RESUMEN
Being minimally invasive and thus allowing repeated measures over time, liquid biopsies are taking over traditional solid biopsies in certain circumstances such as those for unreachable tumors, very early stages or treatment monitoring. However, regarding TP53 mutation status analysis, liquid biopsies have not yet substituted tissue samples, mainly due to the lack of concordance between the two types of biopsies. This needs to be examined in a study-dependent manner, taking into account the particular type of liquid biopsy analyzed, that is, circulating tumor cells (CTCs) or cell-free DNA (cfDNA), its involvement in the tumor biology and evolution and, finally, the technology used to analyze each biopsy type. Here, we review the main studies analyzing TP53 mutations in either CTCs or cfDNA in the three more prevalent solid tumors: breast, colon and lung cancers. We evaluate the correlation for mutation status between liquid biopsies and tumor tissue, suggesting possible sources of discrepancies, as well as evaluating the clinical utility of using liquid biopsies for the analysis of TP53 mutation status and the future actions that need to be undertaken to make liquid biopsy analysis a reality for the evaluation of TP53 mutations.