Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 17(35): e2102315, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34309186

RESUMEN

Iodine has been known as an effective disinfectant with broad-spectrum antimicrobial potency yet without drug resistance risk when used in clinic. However, the exploration of iodine for antibacterial therapy in orthopedics remains sparse due to its volatile nature and poor solubility. Herein, leveraging the superior absorption capability of metal-organic frameworks (MOFs) and their inherent photocatalytic properties, iodine-loaded MOF surface is presented to realize responsive iodine release along with intracellular reactive oxygen species(ROS) oxidation under near-infrared (NIR) exposure to achieve synergistic antibacterial effect. Iodine is successfully loaded using vapor deposition process onto zeolitic imidazolate framework-8(ZIF-8), which is immobilized onto micro arc oxidized titanium via a hydrothermal approach. The combination of NIR-triggered iodine release and ZIF-8 mediated ROS oxidative stress substantially augments the antibacterial efficacy of this approach both in vitro and in vivo. Furthermore, this composite coating also supported osteogenic differentiation of bone marrow stromal cells, as well as improved osseointegration of coated implants using an intramedullary rat model, suggesting improvement of antibacterial efficacy does not impair osteogenic potential of the implants. Altogether, immobilization of iodine via MOF on orthopedic implants with synergistic antibacterial effect can be a promising strategy to combat bacterial infections.


Asunto(s)
Antiinfecciosos , Yodo , Estructuras Metalorgánicas , Ortopedia , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Yodo/farmacología , Estructuras Metalorgánicas/farmacología , Osteogénesis , Ratas , Titanio/farmacología
2.
FASEB J ; 34(4): 5673-5687, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32115776

RESUMEN

Surface chemistry and mechanical stability determine the osteogenic capability of bone implants. The development of high-strength bioactive scaffolds for in-situ repair of large bone defects is challenging because of the lack of satisfying biomaterials. In this study, highly bioactive Ca-silicate (CSi) bioceramic scaffolds were fabricated by additive manufacturing and then modified for pore-wall reinforcement. Pure CSi scaffolds were fabricated using a direct ink writing technique, and the pore-wall was modified with 0%, 6%, or 10% Mg-doped CSi slurry (CSi, CSi-Mg6, or CSi-Mg10) through electrostatic interaction. Modified CSi@CSi-Mg6 and CSi@CSi-Mg10 scaffolds with over 60% porosity demonstrated an appreciable compressive strength beyond 20 MPa, which was ~2-fold higher than that of pure CSi scaffolds. CSi-Mg6 and CSi-Mg10 coating layers were specifically favorable for retarding bio-dissolution and mechanical decay of scaffolds in vitro. In-vivo investigation of critical-size femoral bone defects repair revealed that CSi@CSi-Mg6 and CSi@CSi-Mg10 scaffolds displayed limited biodegradation, accelerated new bone ingrowth (4-12 weeks), and elicited a suitable mechanical response. In contrast, CSi scaffolds exhibited fast biodegradation and retarded new bone regeneration after 8 weeks. Thus, tailoring of the chemical composition of pore-wall struts of CSi scaffolds is beneficial for enhancing the biomechanical properties and bone repair efficacy.


Asunto(s)
Materiales Biocompatibles/química , Huesos/citología , Compuestos de Calcio/química , Fracturas del Fémur/terapia , Osteogénesis , Silicatos/química , Ingeniería de Tejidos , Andamios del Tejido , Animales , Cerámica/química , Fracturas del Fémur/etiología , Fracturas del Fémur/patología , Fenómenos Mecánicos , Porosidad , Conejos
3.
Graefes Arch Clin Exp Ophthalmol ; 255(11): 2173-2184, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28887638

RESUMEN

PURPOSE: To design an injectable hyaluronate (HA)-based hydrogel system that contains drug-loaded microcapsules as resorbable plugs to deliver ocular drugs. METHODS: In-situ drug-loaded, core-shell-structured chitosan (CS)@HA microcapsules were fabricated via HA hydrosol collecting in electrospun bead-rich CS fibers under continuous stirring. An injectable and cytocompatible hydrogel system with different degrees of chemical crosslinking maintained viscoelastic and sustained drug release for a long-term period of time at body temperature in vitro. RESULTS: With the addition of adipic dihydrazide (ADH) or 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDCI), HA hydrosols transited from liquid to solid state at the gel point, with the G'/G″ ratio varying between 1.43 and 5.32 as a function of crosslinker concentration in the hydrogel phase. Ofloxacin (OFL) release from the mechanically mixed hydrosol system (CS-HA-A0-E0) and the micro-encapsulated hydrosol formulation (CS@HA-A0-E0) were respectively over 80% and 51% of the total drug load leaching out within 24 h. As for the drug-mixed hydrogel systems with low (CS-HA-A0.06-E0.15) and high (CS-HA-A0.06-E0.30) crosslinking density, the OFL release rate reached 38.5 and 46.6% respectively, while the micro-encapsulated hydrogel systems with low (CS@HA-A0.06-E0.15) and high (CS@HA-A0.6-E0.30) showed only (11.9 ± 2.7)% and (17.4 ± 3.5)% drug release respectively. CONCLUSIONS: A one-step in-situ drug-capsulizing method is developed to fabricate a resorbable hydrogel punctal plug with extended drug release. The chemistry of the crosslinking reaction involves the formation of highly biocompatible HA derivatives. Thus, the hydrogel can be used directly in the tear drainage canalicular system.


Asunto(s)
Cápsulas , Preparaciones de Acción Retardada/normas , Sistemas de Liberación de Medicamentos/instrumentación , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Guías de Práctica Clínica como Asunto , Tapones Lagrimales/normas , Materiales Biocompatibles , Sistemas de Liberación de Medicamentos/normas , Infecciones del Ojo , Humanos
4.
J Nanosci Nanotechnol ; 16(6): 5577-85, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27427599

RESUMEN

The chitosan/alginate-trace element-codoped octacalcium phosphate/nano-sized bioactive glass (CS/ALG-teOCP/nBG) composite membranes were prepared by a layer-by-layer coating method for the functional requirement of guided bone regeneration (GBR). The morphology, mechanical properties and moisture content of the membranes was studied by scanning electron microscopy (SEM) observation, mechanical and swelling test. The results showed that the teOCP/nBG distributed uniformly in the composite membranes, and such as-prepared composite membrane exhibited an excellent tensile strength, accompanying with mechanical decay with immersion in aqueous medium. Cell culture and MTT assays showed that the surface microstructure and the ion dissolution products from teOCP/nBG components could enhance the cell proliferation, and especially the composite membranes was suitable for supporting the adhesion and growth behavior of human bone marrow mesenchymal stem cells (hBMSCs) in comparison with the CS/ALG pure polymer membranes. These results suggest that the new CS/ALG-teOCP/nBG composite membrane is highly bioactive and biodegradable, and favorable for guiding bone regeneration.


Asunto(s)
Alginatos/química , Regeneración Ósea/efectos de los fármacos , Fosfatos de Calcio/química , Quitosano/química , Vidrio/química , Regeneración Tisular Dirigida/métodos , Membranas Artificiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Fenómenos Mecánicos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanoestructuras/química , Agua/química
5.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 45(2): 126-31, 2016 03.
Artículo en Zh | MEDLINE | ID: mdl-27273985

RESUMEN

OBJECTIVE: To fabricate organic-inorganic composite tissue engineering scaffolds for reconstructing calcified cartilage layer based on three-dimensional (3D) printing technique. METHODS: The scaffolds were developed by 3D-printing technique with highly bioactive calcium-magnesium silicate ultrafine particles of 1%, 3% and 5% of mass fraction, in which the organic phases were composed of type I collagen and sodium hyaluronate. The 3D-printed scaffolds were then crosslinked and solidified by alginate and CaCl2 aerosol. The pore size and distribution of inorganic phase were observed with scanning electron microscope (SEM); the mechanical properties were tested with universal material testing machine, and the porosity of scaffolds was also measured. RESULTS: Pore size was approximately (212.3 ± 34.2) µm with a porosity of (48.3 ± 5.9)%, the compressive modulus of the scaffolds was (7.2 ± 1.2) MPa, which was irrelevant to the percentage changes of calcium-magnesium silicate, the compressive modulus was between that of cartilage and subchondral bone. CONCLUSION: The porous scaffolds for calcified cartilage layer have been successfully fabricated, which would be used for multi-layered composite scaffolds in osteochondral injury.


Asunto(s)
Bioimpresión , Cartílago/crecimiento & desarrollo , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Ensayo de Materiales , Porosidad
6.
Biotechnol Lett ; 36(5): 961-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24563298

RESUMEN

Anophthalmic orbit restoration with artificial implants is usually accompanied with the risks of bacterial penetration and implant exposure. Here, we develop a facile evaporation-inducing self-assembly approach to modify the porous hydroxyapatite (pHA) orbital implants by using sol-gel derived CuO-containing mesoporous bioactive glass (Cu-MBG). The Cu-MBG coatings with 0-5 mol% CuO were prepared in the pore wall of pHA by immersion-evaporation-ageing route in the sol precursor of Cu-MBG. Brunauer-Emmett-Teller and Barrette-Joyner-Halenda analyses showed that the specific surface area and pore volume were slightly decreased with increasing CuO content, while the Cu-MBG-modified pHA maintained a sustained release of ofloxacin and significantly inhibited the bacterial viability (Staphylococcus aureus and Escherichia coli). These studies demonstrate that the Cu-MBG modification provides an effective and facile strategy to endow combined biological performances of pHA orbital implants and potentially reduce implant-related side effects.


Asunto(s)
Antibacterianos/química , Cobre/química , Sistemas de Liberación de Medicamentos/métodos , Vidrio/química , Implantes Orbitales , Antibacterianos/farmacocinética , Porosidad
7.
J Orthop Translat ; 45: 88-99, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38516038

RESUMEN

Background: Alveolar bone destruction due to periodontal disease often requires a bone graft substitute to reconstruct the anatomical structures and biological functions of the bone tissue. Despite significant advances in the development of foreign ion-doped nonstoichiometric wollastonite bioceramics (CaSiO3, nCSi) for alveolar bone regeneration over the past decade, the in vivo biosafety and osteogenesis of nCSi scaffolds remain uncertain. In this study, we developed a customized porous nCSi scaffold to investigate the in vivo biocompatibility and osteogenic properties of nCSi bioceramics. Methods: Six percent Mg-doped nCSi bioceramic scaffolds were fabricated by digital light processing (DLP), and the scaffold morphology, pore architecture, compressive strength, in vitro biodegradation, and apatite-forming ability of the bioceramic scaffolds were investigated systematically. Subsequently, an alveolar bone defect rabbit model was used to evaluate the biocompatibility and osteogenic efficacy of the nCSi bioceramics. Animal weight, hematological test, blood biochemical test, wet weight of the main organs, and pathological examination of the main organs were conducted. Micro-CT and histological staining were performed to analyze the osteogenic potential of the personalized bioceramic scaffolds. Results: The nCSi scaffolds exhibited appreciable initial compressive strength (>30 MPa) and mild mechanical decay over time during in vitro biodissolution. In addition, the scaffolds induced apatite remineralization in SBF. Bioceramic scaffolds have been proven to have good biocompatibility in vivo after implantation into the alveolar bone defect of rabbits. No significant effects on the hematological indices, blood biochemical parameters, organ wet weight, or organ histopathology were detected from 3 to 180 days postoperatively. The porous scaffolds exhibited strong bone regeneration capability in the alveolar bone defect model of rabbits. Micro-CT and histological examination showed effective maintenance of bone morphology in the bioceramic scaffold group; however, depressed bone tissue was observed in the control group. Conclusions: Our results suggest that personalized nCSi bioceramic scaffolds can be fabricated using the DLP technique. These newly developed strong bioceramic scaffolds exhibit good biocompatibility and osteogenic capability in vivo and have excellent potential as next-generation oral implants. The translational potential of this article: Tissue-engineered strategies for alveolar bone repair require a bone graft substitute with appreciable biocompatibility and osteogenic capability. This article provides a systematic investigation of the in vivo biosafety and osteogenic property of nCSi to further development of a silicate-based bioceramics materials for clinical applications.

8.
Bioact Mater ; 36: 551-564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39072286

RESUMEN

Prosthetic eye is indispensable as filler after enucleation in patients with anophthalmia, whereas there are still many complications including postoperative infection and eye socket depression or extrusion during the conventional artificial eye material applications. Some Ca-silicate biomaterials showed superior bioactivity but their biological stability in vivo limit the biomedical application as long-term or permanent implants. Herein we aimed to understand the physicochemical and potential biological responses of zinc doping in wollastonite bioceramic used for orbital implants. The wollastonite powders with different zinc dopant contents (CSi-Znx) could be fabricated as porous implants with strut or curve surface pore geometries (cubic, IWP) via ceramic stereolithography. The experimental results indicated that, by increasing zinc-substituting-Ca ratio (up to 9%), the sintering and mechanical properties could be significantly enhanced, and meanwhile the bio-dissolution in vitro and biodegradability in vivo were thoroughly inhibited. In particular, an appreciable angiogenic activity and expected antibacterial efficacy (over 90 %) were synergistically achieved at 9 mol% Zn dopant. In the back-embedding and enucleation and implantation model experiments in rabbits, the superior continuous angiogenesis was corroborated from the 2D/3D fibrovascular reconstruction in the IWP-pore CSi-Zn9 and CSi-Zn13.5 groups within very short time stages. Totally, the present silicate-based bioceramic via selective Zn doping could produce outstanding structural stability and bifunctional biological responses which is especially valuable for developing the next-generation implants with vascular insertion and fixation in orbital reconstruction prothesis.

9.
J Zhejiang Univ Sci B ; 25(1): 65-82, 2024 Jan 15.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38163667

RESUMEN

Magnesium-doped calcium silicate (CS) bioceramic scaffolds have unique advantages in mandibular defect repair; however, they lack antibacterial properties to cope with the complex oral microbiome. Herein, for the first time, the CS scaffold was functionally modified with a novel copper-containing polydopamine (PDA(Cu2+|)) rapid deposition method, to construct internally modified (*P), externally modified (@PDA), and dually modified (*P@PDA) scaffolds. The morphology, degradation behavior, and mechanical properties of the obtained scaffolds were evaluated in vitro. The results showed that the CS*P@PDA had a unique micro-/nano-structural surface and appreciable mechanical resistance. During the prolonged immersion stage, the release of copper ions from the CS*P@PDA scaffolds was rapid in the early stage and exhibited long-term sustained release. The in vitro evaluation revealed that the release behavior of copper ions ascribed an excellent antibacterial effect to the CS*P@PDA, while the scaffolds retained good cytocompatibility with improved osteogenesis and angiogenesis effects. Finally, the PDA(Cu2+)-modified scaffolds showed effective early bone regeneration in a critical-size rabbit mandibular defect model. Overall, it was indicated that considerable antibacterial property along with the enhancement of alveolar bone regeneration can be imparted to the scaffold by the two-step PDA(Cu2+) modification, and the convenience and wide applicability of this technique make it a promising strategy to avoid bacterial infections on implants.


Asunto(s)
Cobre , Andamios del Tejido , Animales , Conejos , Cobre/farmacología , Andamios del Tejido/química , Regeneración Ósea , Antibacterianos/farmacología , Osteogénesis , Calcio , Iones/farmacología
10.
RSC Adv ; 14(15): 10526-10537, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38567335

RESUMEN

Ca-phosphate/-silicate ceramic granules have been widely studied because their biodegradable fillers can enhance bone defect repair accompanied with bioactive ion release and material degradation; however, it is a challenge to endow bioceramic composites with time-dependent ion release and highly efficient osteogenesis in vivo. Herein, we prepared dual-core-type bioceramic granules with varying chemical compositions beneficial for controlling ion release and stimulating osteogenic capability. Core-shell-structured bioceramic granules (P8-Sr4@Zn3, P8-Sr4@TCP, and P8-Sr4@HAR) composed of 8% P- and 4% Sr-substituting wollastonite (P8, Sr4) dual core components and different shell components, such as 3% Zn-substituting wollastonite (Zn3), ß-tricalcium phosphate (ß-TCP), and hardystonite (HAR), were prepared by cutting extruded core-shell fibers through dual-core ternary nozzles, followed by high-temperature sintering post-treatment. The experimental results showed that nonstoichiometric wollastonite core components contributed to more biologically active ion release in Tris buffer in vitro, and the sparingly dissolvable shell component readily maintained the granule morphology in vivo; thus, such bioceramic implants can adjust new bone growth and material degradation over time. In particular, bioceramic granules encapsulated by the TCP shell exhibited the most appreciable osteogenic capacity and expected biodegradation, which was mostly favorable for bone repair in critical bone defects. It is reasonable to consider that this new multiphasic bioceramic granule design is versatile for developing next-generation implants for various bone damage repairs.

11.
Regen Biomater ; 11: rbae100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224129

RESUMEN

It is known that magnesium phosphate cements (MPCs) show appreciable mechanical strength and biocompatibility, but the hydration reaction processes often lead to intense heat release while the hydration products present weak resistance to mechanical decay and low bioactivity. Herein we developed an MPC-based system, which was low-heat-releasing and fast-curing in this study, by compounding with self-curing calcium silicate cements (CSCs). The MPC composed of magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4), disodium hydrogen phosphate (Na2HPO4), magnesium hydrogen phosphate trihydrate (MgHPO4·3H2O) and chitosan were weakly basic, which would be more stable in vivo. The physicochemical properties indicated that the addition of CSCs could increase the final setting time while decrease the heat release. Meanwhile, the CSCs could endow MPC substrate with apatite re-mineralization reactivity, especially, which add 25 wt.% CSCs showed the most significant apatite deposition. What's more, the mechanical evolution in buffer demonstrated CSCs could enhance and sustain the mechanical strength during degradation, and the internal constructs of cement implants could still be reconstructed by µCT analysis in rabbit femoral bone defect model in vivo. Particularly, appropriate CSCs adjusted the biodegradation and promoted new bone tissue regeneration in vivo. Totally, the MPC/CSCs composite system endows bioactivity and sustains mechanical strength of the MPC, which may be promising for expending the clinical applications of MPC-based bone cements.

12.
ACS Biomater Sci Eng ; 10(2): 1077-1089, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38301150

RESUMEN

It is known that hydroxyapatite-type calcium phosphate cement (CPC) shows appreciable self-curing properties, but the phase transformation products often lead to slow biodegradation and disappointing osteogenic responses. Herein, we developed an innovative strategy to endow invisible micropore networks, which could tune the microstructures and biodegradation of α-tricalcium phosphate (α-TCP)-based CPC by gypsum fibers, and the osteogenic capability of the composite cements could be enhanced in vivo. The gypsum fibers were prepared via extruding the gypsum powder/carboxylated chitosan (CC) slurry through a 22G nozzle (410 µm in diameter) and collecting with a calcium salt solution. Then, the CPCs were prepared by mixing the α-TCP powder with gypsum fibers (0-24 wt %) and an aqueous solution to form self-curing cements. The physicochemical characterizations showed that injectability was decreased with an increase in the fiber contents. The µCT reconstruction demonstrated that the gypsum fiber could be distributed in the CPC substrate and produce long-range micropore architectures. In particular, incorporation of gypsum fibers would tune the ion release, produce tunnel-like pore networks in vitro, and promote new bone tissue regeneration in rabbit femoral bone defects in vivo. Appropriate gypsum fibers (16 and 24 wt %) could enhance bone defect repair and cement biodegradation. These results demonstrate that the highly biodegradable cement fibers could mediate the microstructures of conventional CPC biomaterials, and such a bicomponent composite strategy may be beneficial for expanding clinical CPC-based applications.


Asunto(s)
Sulfato de Calcio , Hidroxiapatitas , Osteogénesis , Animales , Conejos , Sulfato de Calcio/farmacología , Polvos , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Cementos para Huesos/farmacología , Cementos para Huesos/química
13.
Mater Today Bio ; 24: 100936, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38234459

RESUMEN

Structural parameters of the implants such as shape, size, and porosity of the pores have been extensively investigated to promote bone tissue repair, however, it is unknown how the pore interconnectivity affects the bone growth behaviors in the scaffolds. Herein we systematically evaluated the effect of biodegradable bioceramics as a secondary phase filler in the macroporous networks on the mechanical and osteogenic behaviors in sparingly dissolvable bioceramic scaffolds. The pure hardystonite (HT) scaffolds with ∼550 & 800 µm in pore sizes were prepared by digital light processing, and then the Sr-doped calcium silicate (SrCSi) bioceramic slurry without and with 30 % organic porogens were intruded into the HT scaffolds with 800 µm pore size and sintered at 1150 °C. It indicated that the organic porogens could endow spherical micropores in the SrCSi filler, and the invasion of the SrCSi component could not only significantly enhance the compressive strength and modulus of the HT-based scaffolds, but also induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The pure HT scaffolds showed extremely slow bio-dissolution in Tris buffer after immersion for 8 weeks (∼1 % mass decay); in contrast, the SrCSi filler would readily dissolve into the aqueous medium and produced a steady mass decay (>6 % mass loss). In vivo experiments in rabbit femoral bone defect models showed that the pure HT scaffolds showed bone tissue ingrowth but the bone growth was impeded in the SrCSi-intruded scaffolds within 4 weeks; however, the group with higher porosity of SrCSi filler showed appreciable osteogenesis after 8 weeks of implantation and the whole scaffold was uniformly covered by new bone tissues after 16 weeks. These findings provide some new insights that the pore interconnectivity is not inevitable to impede bone ingrowth with the prolongation of implantation time, and such a highly biodegradable and bioactive filler intrusion strategy may be beneficial for optimizing the performances of scaffolds in bone regenerative medicine applications.

14.
J Mater Chem B ; 11(11): 2417-2430, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36809396

RESUMEN

Silicate-based biomaterials-clinically applied fillers and promising candidates-can act as a highly biocompatible substrate for osteostimulative osteogenic cell growth in vitro and in vivo. These biomaterials have been proven to exhibit a variety of conventional morphologies in bone repair, including scaffolds, granules, coatings and cement pastes. Herein, we aim to develop a series of novel bioceramic fiber-derived granules with core-shell structures which have a hardystonite (HT) shell layer and changeable core components-that is, the chemical compositions of a core layer can be tuned to include a wide range of silicate candidates (e.g., wollastonite (CSi)) with doping of functional ions (e.g., Mg, P, and Sr). Meanwhile, it is versatile to control the biodegradation and bioactive ion release sufficiently for stimulating new bone growth after implantation. Our method employs rapidly gelling ultralong core-shell CSi@HT fibers derived from different polymer hydrosol-loaded inorganic powder slurries through the coaxially aligned bilayer nozzles, followed by cutting and sintering treatments. It was demonstrated that the nonstoichiometric CSi core component could contribute to faster bio-dissolution and biologically active ion release in tris buffer in vitro. The rabbit femoral bone defect repair experiments in vivo indicated that core-shell bioceramic granules with an 8% P-doped CSi-core could significantly stimulate osteogenic potential favorable for bone repair. It is worth concluding that such a tunable component distribution strategy in fiber-type bioceramic implants may develop new-generation composite biomaterials endowed with time-dependent biodegradation and high osteostimulative activities for a range of bone repair applications in situ.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Animales , Conejos , Porosidad , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Osteogénesis , Silicatos/farmacología , Silicatos/química
15.
Biomater Sci ; 11(8): 2924-2934, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36892448

RESUMEN

Osteochondral tissue involves cartilage, calcified cartilage and subchondral bone. These tissues differ significantly in chemical compositions, structures, mechanical properties and cellular compositions. Therefore, the repairing materials face different osteochondral tissue regeneration needs and rates. In this study, we fabricated an osteochondral tissue-inspired triphasic material, which was composed of a poly(lactide-co-glycolide) (PLGA) scaffold loaded with fibrin hydrogel, bone marrow stromal cells (BMSCs) and transforming growth factor-ß1 (TGF-ß1) for cartilage tissue, a bilayer poly(L-lactide-co-caprolactone) (PLCL)-fibrous membrane loaded with chondroitin sulfate and bioactive glass, respectively, for calcified cartilage, and a 3D-printed calcium silicate ceramic scaffold for subchondral bone. The triphasic scaffold was press-fitted into the osteochondral defects in rabbit (cylindrical defects with a diameter of 4 mm and a depth of 4 mm) and minipig knee joints (cylindrical defects with a diameter of 10 mm and a depth of 6 mm). The µ-CT and histological analysis showed that the triphasic scaffold was partly degraded, and significantly promoted the regeneration of hyaline cartilage after they were implanted in vivo. The superficial cartilage showed good recovery and uniformity. The calcified cartilage layer (CCL) fibrous membrane was in favor of a better cartilage regeneration morphology, a continuous cartilage structure and less fibrocartilage tissue formation. The bone tissue grew into the material, while the CCL membrane limited bone overgrowth. The newly generated osteochondral tissues were well integrated with the surrounding tissues too.


Asunto(s)
Biomimética , Andamios del Tejido , Conejos , Porcinos , Animales , Andamios del Tejido/química , Porcinos Enanos , Cartílago , Huesos
16.
Bioact Mater ; 25: 374-386, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36865987

RESUMEN

The pore architecture of porous scaffolds is a critical factor in osteogenesis, but it is a challenge to precisely configure strut-based scaffolds because of the inevitable filament corner and pore geometry deformation. This study provides a pore architecture tailoring strategy in which a series of Mg-doped wollastonite scaffolds with fully interconnected pore networks and curved pore architectures called triply periodic minimal surfaces (TPMS), which are similar to cancellous bone, are fabricated by a digital light processing technique. The sheet-TPMS pore geometries (s-Diamond, s-Gyroid) contribute to a 3‒4-fold higher initial compressive strength and 20%-40% faster Mg-ion-release rate compared to the other-TPMS scaffolds, including Diamond, Gyroid, and the Schoen's I-graph-Wrapped Package (IWP) in vitro. However, we found that Gyroid and Diamond pore scaffolds can significantly induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Analyses of rabbit experiments in vivo show that the regeneration of bone tissue in the sheet-TPMS pore geometry is delayed; on the other hand, Diamond and Gyroid pore scaffolds show notable neo-bone tissue in the center pore regions during the early stages (3-5 weeks) and the bone tissue uniformly fills the whole porous network after 7 weeks. Collectively, the design methods in this study provide an important perspective for optimizing the pore architecture design of bioceramic scaffolds to accelerate the rate of osteogenesis and promote the clinical translation of bioceramic scaffolds in the repair of bone defects.

17.
J Mater Chem B ; 11(16): 3752-3753, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042959

RESUMEN

Correction for 'Core-shell bioceramic fiber-derived biphasic granules with adjustable core compositions for tuning bone regeneration efficacy' by Zhaonan Bao et al., J. Mater. Chem. B, 2023, 11, 2417-2430, https://doi.org/10.1039/D3TB90052E.

18.
Regen Biomater ; 10: rbad057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359729

RESUMEN

Large-size mandible graft has huge needs in clinic caused by infection, tumor, congenital deformity, bone trauma and so on. However, the reconstruction of large-size mandible defect is challenged due to its complex anatomical structure and large-range bone injury. The design and fabrication of porous implants with large segments and specific shapes matching the native mandible remain a considerable challenge. Herein, the 6% Mg-doped calcium silicate (CSi-Mg6) and ß- and α-tricalcium phosphate (ß-TCP, α-TCP) bioceramics were fabricated by digital light processing as the porous scaffolds of over 50% in porosity, while the titanium mesh was fabricated by selective laser melting. The mechanical tests showed that the initial flexible/compressive resistance of CSi-Mg6 scaffolds was markedly higher than that of ß-TCP and α-TCP scaffolds. Cell experiments showed that these materials all had good biocompatibility, while CSi-Mg6 significantly promoted cell proliferation. In the rabbit critically sized mandible bone defects (∼13 mm in length) filled with porous bioceramic scaffolds, the titanium meshes and titanium nails were acted as fixation and load bearing. The results showed that the defects were kept during the observation period in the blank (control) group; in contrast, the osteogenic capability was significantly enhanced in the CSi-Mg6 and α-TCP groups in comparison with the ß-TCP group, and these two groups not only had significantly increased new bone formation but also had thicker trabecular and smaller trabecular spacing. Besides, the CSi-Mg6 and α-TCP groups showed appreciable material biodegradation in the later stage (from 8 to 12 weeks) in comparison with the ß-TCP scaffolds while the CSi-Mg6 group showed much outstanding mechanical capacity in vivo in the early stage compared to the ß-TCP and α-TCP groups. Totally, these findings suggest that the combination of customized strength-strong bioactive CSi-Mg6 scaffolds together with titanium meshes is a promising way for repairing the large-size load-bearing mandible defects.

19.
Front Bioeng Biotechnol ; 11: 1260639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840661

RESUMEN

Pore parameters, structural stability, and filler morphology of artificial implants are key factors influencing the process of bone tissue repair. However, the extent to which each of these factors contributes to bone formation in the preparation of porous bioceramics is currently unclear, with the two often being coupled. Herein, we prepared magnesium-doped wollastonite (Mg-CSi) scaffolds with 57% and 70% porosity (57-S and 70-S) via a 3D printing technique. Meanwhile, the bioceramic granules (57-G and 70-G) with curved pore topography (IWP) were prepared by physically disrupting the 57-S and 70-S scaffolds, respectively, and compared for in vivo osteogenesis at 4, 10, and 16 weeks. The pore parameters and the mechanical and biodegradable properties of different porous bioceramics were characterized systematically. The four groups of porous scaffolds and granules were then implanted into a rabbit femoral defect model to evaluate the osteogenic behavior in vivo. 2D/3D reconstruction and histological analysis showed that significant bone tissue production was visible in the central zone of porous granule groups at the early stage but bone tissue ingrowth was slower in the porous scaffold groups. The bone tissue regeneration and reconstruction capacity were stronger after 10 weeks, and the porous architecture of the 57-S scaffold was maintained stably at 16 weeks. These experimental results demonstrated that the structure-collapsed porous bioceramic is favorable for early-stage osteoconduction and that the 3D topological scaffolds may provide more structural stability for bone tissue growth for a long-term stage. These findings provide new ideas for the selection of different types of porous bioceramics for clinical bone repair.

20.
Mater Today Bio ; 20: 100667, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37273795

RESUMEN

The pore morphology design of bioceramic scaffolds plays a substantial role in the induction of bone regeneration. Specifically, the effects of different scaffold pore geometry designs on angiogenesis and new bone regeneration remain unclear. Therefore, we fabricated Mg/Sr co-doped wollastonite bioceramic (MS-CSi) scaffolds with three different pore geometries (gyroid, cylindrical, and cubic) and compared their effects on osteogenesis and angiogenesis in vitro and in vivo. The MS-CSi scaffolds were fabricated by digital light processing (DLP) printing technology. The pore structure, mechanical properties, and degradation rate of the scaffolds were investigated. Cell proliferation on the scaffolds was evaluated using CCK-8 assays while angiogenesis was assessed using Transwell migration assays, tube formation assays, and immunofluorescence staining. The underlying mechanism was explored by western blotting. Osteogenic ability of scaffolds was evaluated by alkaline phosphatase (ALP) staining, western blotting, and qRT-PCR. Subsequently, a rabbit femoral defect model was prepared to compare differences in the scaffolds in osteogenesis and angiogenesis in vivo. Cell culture experiments showed that the gyroid pore scaffold downregulated YAP/TAZ phosphorylation and enhanced YAP/TAZ nuclear translocation, thereby promoting proliferation, migration, tube formation, and high expression of CD31 in human umbilical vein endothelial cells (HUVECs) while strut-based (cubic and cylindrical pore) scaffolds promoted osteogenic differentiation in bone marrow mesenchymal stem cells and upregulation of osteogenesis-related genes. The gyroid pore scaffolds were observed to facilitate early angiogenesis in the femoral-defect model rabbits while the strut-based scaffolds promoted the formation of new bone tissue. Our study indicated that the pore geometries and pore curvature characteristics of bioceramic scaffolds can be precisely tuned for enhancing both osteogenesis and angiogenesis. These results may provide new ideas for the design of bioceramic scaffolds for bone regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA