RESUMEN
Greenhouse gas emissions are a massive concern for scientists to minimize the effect of global warming in the environment. In this study, packed bed, coated wall, and membrane reactors were investigated using three novel nickel catalysts for the methanation of CO2. CFD modelling methodologies were implemented to develop 2D models. The validity of the model was investigated in a previous study where experimental and simulated results in a packed bed reactor were in a good agreement. It was observed that the coated wall reactor had poorer performance compared to the packed bed, approximately 30% difference between the results, as the residence time of the former was lower. In addition, two membrane configurations were proposed, including a membrane packed bed and membrane coated wall reactor. Additional studies were performed in the coated wall reactor revealing that lower flow rates lead to higher conversion values. As for the bed thickness the optimum layer was found to be 1 mm. In both membrane reactor configurations, the effect of the thickness of M1 membrane, which indicates the membrane for the removal of H2O, didn't show difference while the reduction of the thickness of M2 membrane, which indicates the membrane for the removal of CO2, H2 and H2O, showed better results in terms of conversion.
Asunto(s)
Dióxido de Carbono , NíquelRESUMEN
Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 /m3 wastewater according to a simplified economic evaluation.
Asunto(s)
Fuentes de Energía Bioeléctrica , Animales , Fuentes de Energía Bioeléctrica/microbiología , Nitrógeno/metabolismo , Electricidad , Aguas Residuales , Bacterias/metabolismo , Hidrógeno , ElectrodosRESUMEN
Efficient and harmless disposal of landfill leachate has attracted increasing attention. In this study, the bio-electro-Fenton method was investigated and developed to degrade the organic compounds in landfill leachate by hydroxyl radical oxidation. The optimal operational parameters (i.e., pH and external voltage) of the bio-electro-Fenton system were detected. Under the conditions of pH 2, 0.6 V, the highest total chemical oxygen demand (COD) decrement efficiency was obtained (about 70%), with apparent removal constant at 6 h (kapp-6h) of about 0.12 h-1. Subsequently, to further increase the degradation efficiency, functionalized carbon black and functionalized carbon nanotube (FCNT) were prepared as catalysts for the cathode electrode modification. With 0.4 mg/cm2 FCNT coated on the cathode electrode, 91.3% of the organic compounds were degraded, remaining only 84 mg/L COD (kapp-6h = 0.24 h-1). In all the reactors, the COD was mainly decreased in 0-6 h, contributing to over 68% of the total degradation efficiency. In the bio-electro-Fenton system, the bio-anode electrode could enhance H2O2 production and the conversion between Fe2+ and Fe3+ by strengthening electrons generation and transportation via the oxidation of organics by biofilms (dominant with Geobacter) covered on the carbon brush.
Asunto(s)
Contaminantes Químicos del Agua , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Peróxido de Hidrógeno/química , Hierro/química , Compuestos Orgánicos , Oxidación-Reducción , Contaminantes Químicos del Agua/químicaAsunto(s)
Gonorrea/epidemiología , Sífilis/epidemiología , COVID-19 , Grecia/epidemiología , Humanos , SARS-CoV-2RESUMEN
CO2 adsorbents comprising various alkaline sorption active phases supported on mesoporous Al2O3 were prepared. The materials were tested regarding their CO2 adsorption behavior in the mid-temperature range, i.e., around 300 °C, as well as characterized via XRD, N2 physisorption, CO2-TPD and TEM. It was found that the Na2O sorption active phase supported on Al2O3 (originated following NaNO3 impregnation) led to the highest CO2 adsorption capacity due to the presence of CO2-philic interfacial Al-O--Na+ sites, and the optimum active phase load was shown to be 12 wt % (0.22 Na/Al molar ratio). Additional adsorbents were prepared by dispersing Na2O over different metal oxide supports (ZrO2, TiO2, CeO2 and SiO2), showing an inferior performance than that of Na2O/Al2O3. The kinetics and thermodynamics of CO2 adsorption were also investigated at various temperatures, showing that CO2 adsorption over the best-performing Na2O/Al2O3 material is exothermic and follows the Avrami model, while tests under varying CO2 partial pressures revealed that the Langmuir isotherm best fits the adsorption data. Lastly, Na2O/Al2O3 was tested under multiple CO2 adsorption-desorption cycles at 300 and 500 °C, respectively. The material was found to maintain its CO2 adsorption capacity with no detrimental effects on its nanostructure, porosity and surface basic sites, thereby rendering it suitable as a reversible CO2 chemisorbent or as a support for the preparation of dual-function materials.
RESUMEN
The present work studies the adsorption of CO2 using a zeolitic industrial molecular sieve (IMS) with a high surface area. The effect of the CO2 feed concentration and the adsorption temperature in conjunction with multiple adsorption-desorption cycles was experimentally investigated. To assess the validity of the experimental results, theoretical calculations based on well-established equations were employed and the values of equilibrium, kinetic, and thermodynamic parameters are presented. Three additional column kinetic models were applied to the data obtained experimentally, in order to predict the breakthrough curves and thus facilitate process design. Results showed a negative correlation between temperature and adsorption capacity, indicating that physical adsorption takes place. Theoretical calculations revealed that the Langmuir isotherm, the Bangham kinetic model (i.e., pore diffusion is the rate-determining step), and the Thomas and Yoon-Nelson models were suitable to describe the CO2 adsorption process by the IMS. The IMS adsorbent material maintained its high CO2 adsorption capacity (>200 mg g-1) after multiple adsorption-desorption cycles, showing excellent regenerability and requiring only a mild desorption treatment (200 °C for 15 min) for regeneration.
RESUMEN
Lichen sclerosus et atrophicus (LSA) is an inflammatory dermatosis of unknown etiology, usually affecting the genital region, with extragenital involvement being uncommon. The coexistence of LSA and morphea in the same lesion is rare. The present study aims to demonstrate that LSA and morphea might share similar pathologic processes. We present a case of a 53-year-old female patient with extragenital lesions with clinical appearance and histopathological features of both LSA and morphea. Finally, the two diseases might lie on the same disease spectrum.
RESUMEN
Nanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La0.52 Sr0.28 Ti0.94 Ni0.06 O3±Î´ . Using temperature-programmed reduction (TPR) and X-ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small-angle X-ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO2 conversion at 800 °C. Time-on-stream tests exhibit superior long-term stability (only 3% activity loss in 8 h) and full regenerability (over three cycles) of the nanoporous exsolved materials in comparison to a commercial Ni/Al2 O3 catalyst.
RESUMEN
The catalytic oxidation of CO is probably the most investigated reaction in the literature, for decades, because of its extended environmental and fundamental importance. In this paper, the oxidation of CO on La1-xSrxMnO3 perovskites (LSMx), either unloaded or loaded with dispersed Ir nanoparticles (Ir/LSMx), was studied in the temperature range 100-450 °C under excess O2 conditions (1% CO + 5% O2). The perovskites, of the type La1-xSrxMnO3 (x = 0.0, 0.3, 0.5 and 0.7), were prepared by the coprecipitation method. The physicochemical and structural properties of both the LSMx and the homologous Ir/LSMx catalysts were evaluated by various techniques (XRD, N2 sorption-desorption by BET-BJH, H2-TPR and H2-Chem), in order to better understand the structure-activity-stability correlations. The effect of preoxidation/prereduction/aging of the catalysts on their activity and stability was also investigated. Results revealed that both LSMx and Ir/LSMx are effective for CO oxidation, with the latter being superior to the former. In both series of materials, increasing the substitution of La by Sr in the composition of the perovskite resulted to a gradual suppression of their CO oxidation activity when these were prereduced; the opposite was true for preoxidized samples. Inverse hysteresis phenomena in activity were observed during heating/cooling cycles on the prereduced Ir/LSMx catalysts with the loop amplitude narrowing with increasing Sr-content in LSMx. Oxidative thermal sintering experiments at high temperatures revealed excellent antisintering behavior of Ir nanoparticles supported on LSMx, resulting from perovskite's favorable antisintering properties of high oxygen storage capacity and surface oxygen vacancies.
RESUMEN
In May 2022, for the first time, multiple cases of mpox were reported in several non-endemic countries. The first ever case of the disease in Greece was confirmed on 8 June 2022, and a total of 88 cases were reported in the country until the end of April 2023. A multidisciplinary response team was established by the Greek National Public Health Organization (EODY) to monitor and manage the situation. EODY's emergency response focused on enhanced surveillance, laboratory testing, contact tracing, medical countermeasures, and the education of health care providers and the public. Even though management of cases was considered successful and the risk from the disease was downgraded, sporadic cases continue to occur. Here, we provide epidemiological and laboratory features of the reported cases to depict the course of the disease notification rate. Our results suggest that measures for raising awareness as well as vaccination of high-risk groups of the population should be continued.
Asunto(s)
Mpox , Humanos , Trazado de Contacto , Brotes de Enfermedades , Grecia/epidemiología , Salud PúblicaRESUMEN
Selective catalytic reduction (SCR) is probably the most widespread process for limiting NOx emissions under lean conditions (O2 excess) and, in addition to the currently used NH3 or urea as a reducing agent, many other alternative reductants could be more promising, such as CxHy/CxHyOz, H2 and CO. Different catalysts have been used thus far for NOx abatement from mobile (automotive) and stationary (fossil fuel combustion plants) sources, however, perovskites demand considerable attention, partly due to their versatility to combine and incorporate various chemical elements in their lattice that favor deNOx catalysis. In this work, the CxHy/CxHyOz-, H2-, and CO-SCR of NOx on perovskite-based catalysts is reviewed, with particular emphasis on the role of the reducing agent nature and perovskite composition. An effort has also been made to further discuss the correlation between the physicochemical properties of the perovskite-based catalysts and their deNOx activity. Proposed kinetic models are presented as well, that delve deeper into deNOx mechanisms over perovskite-based catalysts and potentially pave the way for further improving their deNOx efficiency.
RESUMEN
In this study, we examine the effect of integrating different carbon nanostructures (carbon nanotubes, CNTs, graphene nanoplatelets, GNPs) into Ni- and Ni-W-based bi-functional catalysts for hydrocracking of heptane performed at 400 °C. The effect of varying the SiO2/Al2O3 ratio of the zeolite Y support (between 5 and 30) on the heptane conversion is also studied. The results show that the activity, in terms of heptane conversion, followed the order CNT/Ni-ZY5 (92%) > GNP/Ni-ZY5 (89%) > CNT/Ni-W-ZY30 (86%) > GNP/Ni-W-ZY30 (85%) > CNT/Ni-ZY30 (84%) > GNP/Ni-ZY30 (83%). Thus, the CNT-based catalysts exhibited slightly higher heptane conversion as compared to the GNP-based ones. Furthermore, bimetallic (Ni-W) catalysts possessed higher BET surface areas (725 m2/g for CNT/Ni-W-ZY30 and 612 m2/g for CNT/Ni-ZY30) and exhibited enhanced hydrocracking activity as compared to the monometallic (Ni) catalyst with the same zeolite support and type of carbon structure. It was also shown that CNT-based catalysts possessed higher regeneration capability than their GNP-based counterparts due to the slightly higher thermal stability of the CVD-grown CNTs.
RESUMEN
In this paper, we show how the composition of bimetallic Fe-Ni exsolution can be controlled by the nature and concentration of oxygen vacancies in the parental matrix and how this is used to modify the performance of CO2-assisted ethane conversion. Mesoporous A-site-deficient La0.4Sr0.6-αTi0.6Fe0.35Ni0.05O3±Î´ (0 ≤ α ≤ 0.2) perovskites with substantial specific surface area (>40 m2/g) enabled fast exsolution kinetics (T < 500 °C, t < 1 h) of bimetallic Fe-Ni nanoparticles of increasing size (3-10 nm). Through the application of a multitechnique approach we found that the A-site deficiency determined the concentration of oxygen vacancies associated with iron, which controlled the Fe reduction. Instead of homogeneous bimetallic nanoparticles, the increasing Fe fraction from 37 to 57% led to the emergence of bimodal Fe/Ni3Fe systems. Catalytic tests showed superior stability of our catalysts with respect to commercial Ni/Al2O3. Ethane reforming was found to be the favored pathway, but an increase in selectivity toward ethane dehydrogenation occurred for the systems with a low metallic Fe fraction. The chance to control the reduction and growth processes of bimetallic exsolution offers interesting prospects for the design of advanced catalysts based on bimodal nanoparticle heterostructures.
RESUMEN
Experimental investigation and model simulation was combined to identify the effect of metal ions on mitigating ammonia inhibition during anaerobic digestion. Five metal ions (Ca, Mg, Cu, Zn, Fe) were tested in reactors with 1 g-glucose/L/d and 5 g-N/L under fed batch operation. Ca addition was considered the optimal approach with a 25% increment in methane production via balanced-strengthening dehydrogenases and reinforcing protein-binding structure. Gene-sequencing results suggested 50% and 15% increment in acetotrophic-related and hydrogenotrophic-related dehydrogenases, respectively, after Ca addition. The Anaerobic Digestion Model No.1 was modified by introducing lactate-related reactions, syntrophic acetate oxidation process, and kinetic equation of metal ions, with satisfactory predictions of methane and intermediates (R2 > 0.80). The lowest affinity constant KI_MI value was obtained with Ca supplement, indicating the highest conversion rate of substrates to methane. The model evaluation revealed the balanced ratio on the enzyme contribution of acetotrophic to hydrogenotrophic methanogenesis.
Asunto(s)
Amoníaco , Calcio , Anaerobiosis , Reactores Biológicos , Iones , Metano , OxidorreductasasRESUMEN
Bioaugmentation is an attractive method to improve methane production (MP) in the anaerobic digestion (AD) process. In this study, to tackle the ammonia inhibition problem, a long-term (operating over 6 months) acclimatized consortia and a well-constructed consortia were selected as the bioaugmentation consortia for sequencing batch AD reactors fed with dairy manure and pig manure under mesophilic condition. Similar responses, in terms of the reactor performance and microorganisms structure to the different consortia, were observed with both manure kinds indicating that the effectiveness of bioaugmentation was mainly decided by the composition of the added consortia, not the feedstock. 39 - 49% increment in MP was obtained in the reactors bioaugmented with well-constructed consortia, which was higher than the acclimatized consortia (about 25% increment in MP). Both acetogenesis and methanogenesis (advantageous) steps were stimulated with well-constructed consortia bioaugmentation. According to key functional enzyme analysis, the increment of glycine hydroxymethyltransferase and phosphoglycerate mutase might be the critical point in the bioaugmented AD system. Based on the higher functional contribution rate of the well-constructed consortia bioaugmentation reactors, Methanosarcina could have expressed more comprehensive functions or performed stronger activities in different functions than Methanosaeta.
Asunto(s)
Amoníaco , Estiércol , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Metano , PorcinosRESUMEN
In the work presented herein, a joint experimental and theoretical approach has been carried out to obtain an insight into the desulfurization performance of an industrial molecular sieve (IMS), resembling a zeolitic structure with a morphology of cubic crystallites and a high surface area of 590 m2 g-1, with a view to removing H2S from biogas. The impact of temperature, H2S inlet concentration, gas matrix, and regeneration cycles on the desulfurization performance of the IMS was thoroughly probed. The adsorption equilibrium, sorption kinetics, and thermodynamics were also examined. Experimental results showed that the relationship between H2S uptake and temperature increase was inversely proportional. Higher H2S initial concentrations led to lower breakpoints. The presence of CO2 negatively affected the desulfurization performance. The IMS was fully regenerated after 15 adsorption/desorption cycles. Theoretical studies revealed that the Langmuir isotherm better described the sorption behavior, pore diffusion was the controlling step of the process (Bangham model), and that the activation energy was 42.7 kJ mol-1 (physisorption). Finally, the thermodynamic studies confirmed that physisorption predominated.
RESUMEN
This study evaluated the methanogenic performance of typical substrates (acetate, formate, H2/CO2, and glucose) under low and high ammonia levels and the Anaerobic Digestion Model No.1 (ADM1) was extended and modified for better simulation and understanding of the process. Formate-utilizing and hydrogen-utilizing methanogenesis showed stronger ammonia resistance than acetate-utilizing methanogenesis (13-23% vs. 34% decrease in methane production (MP)). Model extension, based on foundational experiments fed with three typical precursors (R2 > 0.92), was then validated with glucose degradation experiments, and satisfactory predictions of MP and total volatile fatty acids were obtained (R2 > 0.91). Based on the modified ADM1, the carbon fluxes of glucose degradation were determined, and formate-utilizing methanogenesis showed its importance with a 28-34% contribution of the total methanation, becoming the dominant pathway under high ammonia level. Formate-utilizing methanogenesis also had a thermodynamic advantage among the three pathways. 16S rRNA sequencing suggested a homology between the hydrogen-utilizing and formate-utilizing methanogens. Methanobacterium and Methanobrevibacter were found to be key methanogens, and their enrichment under high ammonia level confirmed the stronger ammonia tolerance of formate-utilizing and hydrogen-utilizing methanogenesis. The microbial characterization and modified ADM1 simulations supported each other.
Asunto(s)
Amoníaco , Dióxido de Carbono , Acetatos , Anaerobiosis , Formiatos , Metano , ARN Ribosómico 16SRESUMEN
The present study provides, for the first time in the literature, a comparative assessment of the catalytic performance of Ni catalysts supported on γ-Al2O3 and γ-Al2O3 modified with La2O3, in a continuous flow trickle bed reactor, for the selective deoxygenation of palm oil. The catalysts were prepared via the wet impregnation method and were characterized, after calcination and/or reduction, by N2 adsorption/desorption, XRD, NH3-TPD, CO2-TPD, H2-TPR, H2-TPD, XPS and TEM, and after the time-on-stream tests, by TGA, TPO, Raman and TEM. Catalytic experiments were performed between 300-400 °C, at a constant pressure (30 bar) and different LHSV (1.2-3.6 h-1). The results show that the incorporation of La2O3 in the Al2O3 support increased the Ni surface atomic concentration (XPS), affected the nature and abundance of surface basicity (CO2-TPD), and despite leading to a drop in surface acidity (NH3-TPD), the Ni/LaAl catalyst presented a larger population of medium-strength acid sites. These characteristics helped promote the SDO process and prevented extended cracking and the formation of coke. Thus, higher triglyceride conversions and n-C15 to n-C18 hydrocarbon yields were achieved with the Ni/LaAl at lower reaction temperatures. Moreover, the Ni/LaAl catalyst was considerably more stable during 20 h of time-on-stream. Examination of the spent catalysts revealed that both carbon deposition and degree of graphitization of the surface coke, as well as, the extent of sintering were lower on the Ni/LaAl catalyst, explaining its excellent performance during time-on-stream.
RESUMEN
The removal of the environmentally toxic and corrosive hydrogen sulfide (H2S) from gas streams with varying overall pressure and H2S concentration is a long-standing challenge faced by the oil and gas industries. The present work focuses on H2S capture using a relatively new type of material, namely metal-organic frameworks (MOFs), in an effort to shed light on their potential as adsorbents in the field of gas storage and separation. MOFs hold great promise as they make possible the design of structures from organic and inorganic units, but also as they have provided an answer to a long-term challenging objective, i.e., how to design extended structures of materials. Moreover, in designing MOFs, one may functionalize the organic units and thus, in essence, create pores with different functionalities, and also to expand the pores in order to increase pore openings. The work presented herein provides a detailed discussion, by thoroughly combining the existing literature on new developments in MOFs for H2S removal, and tries to provide insight into new areas for further research.
RESUMEN
CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.