Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(4): 794-806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328933

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare form of pulmonary hypertension characterized by the presence of organized thrombi that obstruct pulmonary arteries, ultimately leading to right heart failure and death. Among others, impaired angiogenesis and inflammatory thrombosis have been shown to contribute to the progression of CTEPH. In this review, we summarize the 2-faced nature of angiogenesis in both thrombus formation and resolution in the context of CTEPH and highlight the dual role of angiogenesis and neovascularization in resolving venous thrombi. Furthermore, we discuss relevant in vitro and in vivo models that support the benefits or drawbacks of angiogenesis in CTEPH progression. We discuss the key pathways involved in modulating angiogenesis, particularly the underexplored role of TGFß (transforming growth factor-beta) signaling in driving fibrosis as an integral element of CTEPH pathogenesis. We finally explore innovative treatment strategies that target angiogenic pathways. These strategies have the potential to pioneer preventive, inventive, or alternative therapeutic options for patients with CTEPH who may not qualify for surgical interventions. Moreover, they could be used synergistically with established treatments such as pulmonary endarterectomy or balloon pulmonary angioplasty. In summary, this review emphasizes the crucial role of angiogenesis in the development of in fibrothrombotic tissue, a major pathological characteristic of CTEPH.


Asunto(s)
Hipertensión Pulmonar , Embolia Pulmonar , Trombosis , Humanos , Hipertensión Pulmonar/etiología , Embolia Pulmonar/terapia , Angiogénesis , Arteria Pulmonar/patología , Trombosis/patología , Enfermedad Crónica , Endarterectomía/efectos adversos
2.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486669

RESUMEN

Fibroblasts are activated to repair the heart following injury. Fibroblast activation in the mammalian heart leads to a permanent fibrotic scar that impairs cardiac function. In other organisms, such as zebrafish, cardiac injury is followed by transient fibrosis and scar-free regeneration. The mechanisms that drive scarring versus scar-free regeneration are not well understood. Here, we show that the homeobox-containing transcription factor Prrx1b is required for scar-free regeneration of the zebrafish heart as the loss of Prrx1b results in excessive fibrosis and impaired cardiomyocyte proliferation. Through lineage tracing and single-cell RNA sequencing, we find that Prrx1b is activated in epicardial-derived cells where it restricts TGFß ligand expression and collagen production. Furthermore, through combined in vitro experiments in human fetal epicardial-derived cells and in vivo rescue experiments in zebrafish, we conclude that Prrx1 stimulates Nrg1 expression and promotes cardiomyocyte proliferation. Collectively, these results indicate that Prrx1 is a key transcription factor that balances fibrosis and regeneration in the injured zebrafish heart. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Proliferación Celular , Corazón/fisiología , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración , Proteínas de Pez Cebra/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrosis , Proteínas de Homeodominio/genética , Humanos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Neurregulina-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Angiogenesis ; 25(1): 99-112, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34379232

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating disease, characterized by obstructive pulmonary vascular remodelling ultimately leading to right ventricular (RV) failure and death. Disturbed transforming growth factor-ß (TGF-ß)/bone morphogenetic protein (BMP) signalling, endothelial cell dysfunction, increased proliferation of smooth muscle cells and fibroblasts, and inflammation contribute to this abnormal remodelling. Peptidyl-prolyl isomerase Pin1 has been identified as a critical driver of proliferation and inflammation in vascular cells, but its role in the disturbed TGF-ß/BMP signalling, endothelial cell dysfunction, and vascular remodelling in PAH is unknown. Here, we report that Pin1 expression is increased in cultured pulmonary microvascular endothelial cells (MVECs) and lung tissue of PAH patients. Pin1 inhibitor, juglone significantly decreased TGF-ß signalling, increased BMP signalling, normalized their hyper-proliferative, and inflammatory phenotype. Juglone treatment reversed vascular remodelling through reducing TGF-ß signalling in monocrotaline + shunt-PAH rat model. Juglone treatment decreased Fulton index, but did not affect or harm cardiac function and remodelling in rats with RV pressure load induced by pulmonary artery banding. Our study demonstrates that inhibition of Pin1 reversed the PAH phenotype in PAH MVECs in vitro and in PAH rats in vivo, potentially through modulation of TGF-ß/BMP signalling pathways. Selective inhibition of Pin1 could be a novel therapeutic option for the treatment of PAH.


Asunto(s)
Hipertensión Pulmonar , Animales , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Isomerasa de Peptidilprolil , Arteria Pulmonar , Ratas , Factor de Crecimiento Transformador beta , Remodelación Vascular
4.
J Pathol ; 255(3): 330-342, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34357595

RESUMEN

Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)-ß, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor-like kinase (ALK)1 against canonical TGF-ß receptor ALK5-mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF-ß signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF-ß co-receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF-ß-ALK1-Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Condrocitos/patología , Proteínas Ligadas a GPI/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoartritis/patología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Factor de Crecimiento Epidérmico/metabolismo , Humanos , Hipertrofia/patología , Glicoproteínas de Membrana/metabolismo , Ratones , Transducción de Señal/fisiología
5.
J Mol Cell Cardiol ; 156: 95-104, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33744308

RESUMEN

Calcific aortic valve disease (CAVD) is a common progressive disease of the aortic valves, for which no medical treatment exists and surgery represents currently the only therapeutic solution. The development of novel pharmacological treatments for CAVD has been hampered by the lack of suitable test-systems, which require the preservation of the complex valve structure in a mechanically and biochemical controllable system. Therefore, we aimed at establishing a model which allows the study of calcification in intact mouse aortic valves by using the Miniature Tissue Culture System (MTCS), an ex vivo flow model for whole mouse hearts. Aortic valves of wild-type mice were cultured in the MTCS and exposed to osteogenic medium (OSM, containing ascorbic acid, ß-glycerophosphate and dexamethasone) or inorganic phosphates (PI). Osteogenic calcification occurred in the aortic valve leaflets that were cultured ex vivo in the presence of PI, but not of OSM. In vitro cultured mouse and human valvular interstitial cells calcified in both OSM and PI conditions, revealing in vitro-ex vivo differences. Furthermore, endochondral differentiation occurred in the aortic root of ex vivo cultured mouse hearts near the hinge of the aortic valve in both PI and OSM conditions. Dexamethasone was found to induce endochondral differentiation in the aortic root, but to inhibit calcification and the expression of osteogenic markers in the aortic leaflet, partly explaining the absence of calcification in the aortic valve cultured with OSM. The osteogenic calcifications in the aortic leaflet and the endochondral differentiation in the aortic root resemble calcifications found in human CAVD. In conclusion, we have established an ex vivo calcification model for intact wild-type murine aortic valves in which the initiation and progression of aortic valve calcification can be studied. The in vitro-ex vivo differences found in our studies underline the importance of ex vivo models to facilitate pre-clinical translational studies.


Asunto(s)
Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Calcinosis/etiología , Calcinosis/metabolismo , Susceptibilidad a Enfermedades , Animales , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Biomarcadores , Calcificación Fisiológica/efectos de los fármacos , Calcinosis/patología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Dexametasona/farmacología , Células Endoteliales/metabolismo , Humanos , Ratones , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Técnicas de Cultivo de Tejidos
6.
Am J Respir Cell Mol Biol ; 64(3): 331-343, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33264068

RESUMEN

Monoamine oxidases (MAOs), a class of enzymes bound to the outer mitochondrial membrane, are important sources of reactive oxygen species. Increased MAO-A activity in endothelial cells and cardiomyocytes contributes to vascular dysfunction and progression of left heart failure. We hypothesized that inhibition of MAO-A can be used to treat pulmonary arterial hypertension (PAH) and right ventricular (RV) failure. MAO-A levels in lung and RV samples from patients with PAH were compared with levels in samples from donors without PAH. Experimental PAH was induced in male Sprague-Dawley rats by using Sugen 5416 and hypoxia (SuHx), and RV failure was induced in male Wistar rats by using pulmonary trunk banding (PTB). Animals were randomized to receive either saline or the MAO-A inhibitor clorgyline at 10 mg/kg. Echocardiography and RV catheterization were performed, and heart and lung tissues were collected for further analysis. We found increased MAO-A expression in the pulmonary vasculature of patients with PAH and in experimental experimental PAH induced by SuHx. Cardiac MAO-A expression and activity was increased in SuHx- and PTB-induced RV failure. Clorgyline treatment reduced RV afterload and pulmonary vascular remodeling in SuHx rats through reduced pulmonary vascular proliferation and oxidative stress. Moreover, clorgyline improved RV stiffness and relaxation and reversed RV hypertrophy in SuHx rats. In PTB rats, clorgyline had no direct clorgyline had no direct effect on the right ventricle effect. Our study reveals the role of MAO-A in the progression of PAH. Collectively, these findings indicated that MAO-A may be involved in pulmonary vascular remodeling and consecutive RV failure.


Asunto(s)
Progresión de la Enfermedad , Monoaminooxidasa/metabolismo , Hipertensión Arterial Pulmonar/enzimología , Animales , Clorgilina/farmacología , Clorgilina/uso terapéutico , Modelos Animales de Enfermedad , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/fisiopatología , Indoles , Estrés Oxidativo/efectos de los fármacos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Pirroles , Ratas , Remodelación Vascular/efectos de los fármacos , Rigidez Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
7.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946583

RESUMEN

Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-ß (TGF-ß) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Endoglina/análisis , Neoplasias/diagnóstico por imagen , Animales , Enfermedades Cardiovasculares/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias/cirugía , Imagen Óptica/métodos , Tomografía de Emisión de Positrones/métodos , Cirugía Asistida por Computador/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ultrasonografía/métodos
8.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670533

RESUMEN

Hereditary hemorrhagic telangiectasia type 1 (HHT1) is a severe vascular disorder caused by mutations in the TGFß/BMP co-receptor endoglin. Endoglin haploinsufficiency results in vascular malformations and impaired neoangiogenesis. Furthermore, HHT1 patients display an impaired immune response. To date it is not fully understood how endoglin haploinsufficient immune cells contribute to HHT1 pathology. Therefore, we investigated the immune response during tissue repair in Eng+/- mice, a model for HHT1. Eng+/- mice exhibited prolonged infiltration of macrophages after experimentally induced myocardial infarction. Moreover, there was an increased number of inflammatory M1-like macrophages (Ly6Chigh/CD206-) at the expense of reparative M2-like macrophages (Ly6Clow/CD206+). Interestingly, HHT1 patients also showed an increased number of inflammatory macrophages. In vitro analysis revealed that TGFß-induced differentiation of Eng+/- monocytes into M2-like macrophages was blunted. Inhibiting BMP signaling by treating monocytes with LDN-193189 normalized their differentiation. Finally, LDN treatment improved heart function after MI and enhanced vascularization in both wild type and Eng+/- mice. The beneficial effect of LDN was also observed in the hind limb ischemia model. While blood flow recovery was hampered in vehicle-treated animals, LDN treatment improved tissue perfusion recovery in Eng+/- mice. In conclusion, BMPR kinase inhibition restored HHT1 macrophage imbalance in vitro and improved tissue repair after ischemic injury in Eng+/- mice.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Endoglina/metabolismo , Infarto del Miocardio/prevención & control , Pirazoles/farmacología , Pirimidinas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Endoglina/genética , Femenino , Heterocigoto , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/inmunología , Telangiectasia Hemorrágica Hereditaria/metabolismo , Cicatrización de Heridas/genética
9.
J Mol Cell Cardiol ; 143: 26-37, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277975

RESUMEN

RATIONALE: After cardiac damage, excessive neurite outgrowth (sympathetic hyperinnervation) can occur, which is related to ventricular arrhythmias/sudden cardiac death. Post-damage reactivation of epicardium causes epicardium-derived cells (EPDCs) to acquire a mesenchymal character, contributing to cardiac regeneration. Whether EPDCs also contribute to cardiac re/hyperinnervation, is unknown. AIM: To investigate whether mesenchymal EPDCs influence cardiac sympathetic innervation. METHODS AND RESULTS: Sympathetic ganglia were co-cultured with mesenchymal EPDCs and/or myocardium, and neurite outgrowth and sprouting density were assessed. Results showed a significant increase in neurite density and directional (i.e. towards myocardium) outgrowth when ganglia were co-cultured with a combination of EPDCs and myocardium, as compared to cultures with EPDCs or myocardium alone. In absence of myocardium, this outgrowth was not directional. Neurite differentiation of PC12 cells in conditioned medium confirmed these results via a paracrine effect, in accordance with expression of neurotrophic factors in myocardial explants co-cultured with EPDCs. Of interest, EPDCs increased the expression of nerve growth factor (NGF) in cultured, but not in fresh myocardium, possibly due to an "ischemic state" of cultured myocardium, supported by TUNEL and Hif1α expression. Cardiac tissues after myocardial infarction showed robust NGF expression in the infarcted, but not remote area. CONCLUSION: Neurite outgrowth and density increases significantly in the presence of EPDCs by a paracrine effect, indicating a new role for EPDCs in the occurrence of sympathetic re/hyperinnervation after cardiac damage.


Asunto(s)
Corazón/inervación , Miocardio/metabolismo , Pericardio/metabolismo , Fibras Simpáticas Posganglionares/fisiología , Animales , Apoptosis/genética , Línea Celular Tumoral , Células Cultivadas , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Humanos , Ratones , Miocardio/citología , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Proyección Neuronal
10.
J Cell Mol Med ; 24(15): 8417-8429, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573944

RESUMEN

In the diseased and remodelled heart, increased activity and expression of Ca2+/ calmodulin-dependent protein kinase II (CaMKII), an excess of fibrosis, and a decreased electrical coupling and cellular excitability leads to disturbed calcium homeostasis and tissue integrity. This subsequently leads to increased arrhythmia vulnerability and contractile dysfunction. Here, we investigated the combination of CaMKII inhibition (using genetically modified mice expressing the autocamtide-3-related-peptide (AC3I)) together with eplerenone treatment (AC3I-Epler) to prevent electrophysiological remodelling, fibrosis and subsequent functional deterioration in a mouse model of chronic pressure overload. We compared AC3I-Epler mice with mice only subjected to mineralocorticoid receptor (MR) antagonism (WT-Epler) and mice with only CaMKII inhibition (AC3I-No). Our data show that a combined CaMKII inhibition together with MR antagonism mitigates contractile deterioration as was manifested by a preservation of ejection fraction, fractional shortening, global longitudinal strain, peak strain and contractile synchronicity. Furthermore, patchy fibrosis formation was reduced, potentially via inhibition of pro-fibrotic TGF-ß/SMAD3 signalling, which related to a better global contractile performance and a slightly depressed incidence of arrhythmias. Furthermore, the level of patchy fibrosis appeared significantly correlated to eplerenone dose. The addition of eplerenone to CaMKII inhibition potentiates the effects of CaMKII inhibition on pro-fibrotic pathways. As a result of the applied strategy, limiting patchy fibrosis adheres to a higher synchronicity of contraction and an overall better contractile performance which fits with a tempered arrhythmogenesis.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Eplerenona/farmacología , Antagonistas de Receptores de Mineralocorticoides/farmacología , Receptores de Mineralocorticoides/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Fibrosis/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Angiogenesis ; 23(4): 699-714, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32813135

RESUMEN

Imbalanced transforming growth factor beta (TGFß) and bone morphogenetic protein (BMP) signaling are postulated to favor a pathological pulmonary endothelial cell (EC) phenotype in pulmonary arterial hypertension (PAH). BMP9 is shown to reinstate BMP receptor type-II (BMPR2) levels and thereby mitigate hemodynamic and vascular abnormalities in several animal models of pulmonary hypertension (PH). Yet, responses of the pulmonary endothelium of PAH patients to BMP9 are unknown. Therefore, we treated primary PAH patient-derived and healthy pulmonary ECs with BMP9 and observed that stimulation induces transient transcriptional signaling associated with the process of endothelial-to-mesenchymal transition (EndMT). However, solely PAH pulmonary ECs showed signs of a mesenchymal trans-differentiation characterized by a loss of VE-cadherin, induction of transgelin (SM22α), and reorganization of the cytoskeleton. In the PAH cells, a prolonged EndMT signaling was found accompanied by sustained elevation of pro-inflammatory, pro-hypoxic, and pro-apoptotic signaling. Herein we identified interleukin-6 (IL6)-dependent signaling to be the central mediator required for the BMP9-induced phenotypic change in PAH pulmonary ECs. Furthermore, we were able to target the BMP9-induced EndMT process by an IL6 capturing antibody that normalized autocrine IL6 levels, prevented mesenchymal transformation, and maintained a functional EC phenotype in PAH pulmonary ECs. In conclusion, our results show that the BMP9-induced aberrant EndMT in PAH pulmonary ECs is dependent on exacerbated pro-inflammatory signaling mediated through IL6.


Asunto(s)
Células Endoteliales/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Transducción de Señal , Adulto , Anciano , Endotelio Vascular/patología , Femenino , Homeostasis , Humanos , Interleucina-6/metabolismo , Masculino , Microvasos/patología , Persona de Mediana Edad , Pruebas de Neutralización , Fenotipo , Hipertensión Arterial Pulmonar/genética , Transcripción Genética
12.
Haematologica ; 105(6): 1677-1685, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31467128

RESUMEN

Bleeding disorders and thrombotic complications are major causes of morbidity and mortality with many cases being unexplained. Thrombus formation involves aberrant expression and activation of tissue factor (TF) in vascular endothelial and smooth muscle cells. Here, we sought to identify factors that modulate TF gene expression and activity in these vascular cells. The LIM-only protein FHL2 is a scaffolding protein that modulates signal transduction pathways with crucial functions in endothelial and smooth muscle cells. However, the role of FHL2 in TF regulation and thrombosis remains unexplored. Using a murine model of venous thrombosis in mesenteric vessels, we demonstrated that FHL2 deficiency results in exacerbated thrombus formation. Gain- and loss-of-function experiments revealed that FHL2 represses TF expression in endothelial and smooth muscle cells through inhibition of the transcription factors nuclear factor κB and activating protein-1. Furthermore, we observed that FHL2 interacts with the cytoplasmic tail of TF. In line with our in vivo observations, FHL2 decreases TF activity in endothelial and smooth muscle cells whereas FHL2 knockdown or deficiency results in enhanced TF activity. Finally, the FHL2 single nucleotide polymorphism rs4851770 was associated with the risk of venous thrombosis in a large population of venous thrombosis cases and control subjects from 12 studies (INVENT consortium). Altogether, our results highlight functional involvement of FHL2 in TF-mediated coagulation and identify FHL2 as a novel gene associated with venous thrombosis in humans.


Asunto(s)
Tromboplastina , Trombosis de la Vena , Animales , Variación Genética , Humanos , Proteínas con Homeodominio LIM/genética , Ratones , Proteínas Musculares/genética , Tromboplastina/genética , Factores de Transcripción/genética , Trombosis de la Vena/genética
13.
J Pathol ; 247(3): 333-346, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30430573

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) has been unveiled as a common cause for a multitude of human pathologies, including cancer and cardiovascular disease. Vascular calcification is a risk factor for ischemic vascular disorders and slowing calcification may reduce mortality in affected patients. The absence of early biomarkers hampers the identification of patients at risk. EndMT and vascular calcification are induced upon cooperation between distinct stimuli, including inflammatory cytokines and transforming growth factor beta (TGF-ß) family members. However, how these signaling pathways interplay to promote cell differentiation and eventually vascular calcification is not well understood. Using in vitro and ex vivo analysis in animal models and patient-derived tissues, we have identified that the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) induce EndMT in human primary aortic endothelial cells, thereby sensitizing them for BMP-9-induced osteogenic differentiation. Downregulation of the BMP type II receptor BMPR2 is a key event in this process. Rather than compromising BMP canonical signal transduction, loss of BMPR2 results in decreased JNK signaling in ECs, thus enhancing BMP-9-induced mineralization. Altogether, our results point at the BMPR2-JNK signaling axis as a key pathway regulating inflammation-induced EndMT and contributing to calcification. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/fisiología , Transición Epitelial-Mesenquimal/fisiología , Calcificación Vascular/fisiopatología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Células Endoteliales/fisiología , Endotelio Vascular/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Mediadores de Inflamación/farmacología , Interleucina-1beta/farmacología , Ratones Endogámicos C3H , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Calcificación Vascular/patología
14.
J Pathol ; 249(3): 356-367, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257577

RESUMEN

Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure which almost invariably leads to right heart failure and premature death. More than 70% of familial PAH and 20% of idiopathic PAH patients carry heterozygous mutations in the bone morphogenetic protein (BMP) type 2 receptor (BMPR2). However, the incomplete penetrance of BMPR2 mutations suggests that other genetic and environmental factors contribute to the disease. In the current study, we investigate the contribution of autophagy in the degradation of BMPR2 in pulmonary vascular cells. We demonstrate that endogenous BMPR2 is degraded through the lysosome in primary human pulmonary artery endothelial (PAECs) and smooth muscle cells (PASMCs): two cell types that play a key role in the pathology of the disease. By means of an elegant HaloTag system, we show that a block in lysosomal degradation leads to increased levels of BMPR2 at the plasma membrane. In addition, pharmacological or genetic manipulations of autophagy allow us to conclude that autophagy activation contributes to BMPR2 degradation. It has to be further investigated whether the role of autophagy in the degradation of BMPR2 is direct or through the modulation of the endocytic pathway. Interestingly, using an iPSC-derived endothelial cell model, our findings indicate that BMPR2 heterozygosity alone is sufficient to cause an increased autophagic flux. Besides BMPR2 heterozygosity, pro-inflammatory cytokines also contribute to an augmented autophagy in lung vascular cells. Furthermore, we demonstrate an increase in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) levels in lung sections from PAH induced in rats. Accordingly, pulmonary microvascular endothelial cells (MVECs) from end-stage idiopathic PAH patients present an elevated autophagic flux. Our findings support a model in which an increased autophagic flux in PAH patients contributes to a greater decrease in BMPR2 levels. Altogether, this study sheds light on the basic mechanisms of BMPR2 degradation and highlights a crucial role for autophagy in PAH. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Autofagia , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Presión Arterial , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Heterocigoto , Humanos , Mediadores de Inflamación/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Proteolisis , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Transducción de Señal , Adulto Joven
15.
Am J Respir Crit Care Med ; 200(7): 910-920, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042405

RESUMEN

Rationale: Pulmonary arterial hypertension (PAH) is a degenerative arteriopathy that leads to right ventricular (RV) failure. BRD4 (bromodomain-containing protein 4), a member of the BET (bromodomain and extra-terminal motif) family, has been identified as a critical epigenetic driver for cardiovascular diseases.Objectives: To explore the therapeutic potential in PAH of RVX208, a clinically available BET inhibitor.Methods: Microvascular endothelial cells, smooth muscle cells isolated from distal pulmonary arteries of patients with PAH, rats with Sugen5416 + hypoxia- or monocrotaline + shunt-induced PAH, and rats with RV pressure overload induced by pulmonary artery banding were treated with RVX208 in three independent laboratories.Measurements and Main Results: BRD4 is upregulated in the remodeled pulmonary vasculature of patients with PAH, where it regulates FoxM1 and PLK1, proteins implicated in the DNA damage response. RVX208 normalized the hyperproliferative, apoptosis-resistant, and inflammatory phenotype of microvascular endothelial cells and smooth muscle cells isolated from patients with PAH. Oral treatment with RVX208 reversed vascular remodeling and improved pulmonary hemodynamics in two independent trials in Sugen5416 + hypoxia-PAH and in monocrotaline + shunt-PAH. RVX208 could be combined safely with contemporary PAH standard of care. RVX208 treatment also supported the pressure-loaded RV in pulmonary artery banding rats.Conclusions: RVX208, a clinically available BET inhibitor, modulates proproliferative, prosurvival, and proinflammatory pathways, potentially through interactions with FoxM1 and PLK1. This reversed the PAH phenotype in isolated PAH microvascular endothelial cells and smooth muscle cells in vitro, and in diverse PAH rat models. RVX208 also supported the pressure-loaded RV in vivo. Together, these data support the establishment of a clinical trial with RVX208 in patients with PAH.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/metabolismo , Quinazolinonas/farmacología , Factores de Transcripción/metabolismo , Remodelación Vascular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Reparación del ADN , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Proteína Forkhead Box M1/genética , Regulación de la Expresión Génica , Humanos , Inflamación , Microvasos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/citología , Ratas , Factores de Transcripción/antagonistas & inhibidores , Quinasa Tipo Polo 1
16.
Am J Respir Crit Care Med ; 199(7): 891-902, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312106

RESUMEN

RATIONALE: BMP9 (bone morphogenetic protein 9) is a circulating endothelial quiescence factor with protective effects in pulmonary arterial hypertension (PAH). Loss-of-function mutations in BMP9, its receptors, and downstream effectors have been reported in heritable PAH. OBJECTIVES: To determine how an acquired deficiency of BMP9 signaling might contribute to PAH. METHODS: Plasma levels of BMP9 and antagonist soluble endoglin were measured in group 1 PAH, group 2 and 3 pulmonary hypertension (PH), and in patients with severe liver disease without PAH. MEASUREMENTS AND MAIN RESULTS: BMP9 levels were markedly lower in portopulmonary hypertension (PoPH) versus healthy control subjects, or other etiologies of PAH or PH; distinguished PoPH from patients with liver disease without PAH; and were an independent predictor of transplant-free survival. BMP9 levels were decreased in mice with PH associated with CCl4-induced portal hypertension and liver cirrhosis, but were normal in other rodent models of PH. Administration of ALK1-Fc, a BMP9 ligand trap consisting of the activin receptor-like kinase-1 extracellular domain, exacerbated PH and pulmonary vascular remodeling in mice treated with hypoxia versus hypoxia alone. CONCLUSIONS: BMP9 is a sensitive and specific biomarker of PoPH, predicting transplant-free survival and the presence of PAH in liver disease. In rodent models, acquired deficiency of BMP9 signaling can predispose to or exacerbate PH, providing a possible mechanistic link between PoPH and heritable PAH. These findings describe a novel experimental model of severe PH that provides insight into the synergy between pulmonary vascular injury and diminished BMP9 signaling in the pathogenesis of PAH.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Hipertensión Portal/metabolismo , Hipertensión Portal/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hepatopatías/metabolismo , Hepatopatías/fisiopatología , Adulto , Biomarcadores/sangre , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531895

RESUMEN

Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by obstructed pulmonary vasculatures. Current therapies for PAH are limited and only alleviate symptoms. Reduced levels of BMPR2 are associated with PAH pathophysiology. Moreover, reactive oxygen species, inflammation and autophagy have been shown to be hallmarks in PAH. We previously demonstrated that MnTBAP, a synthetic metalloporphyrin with antioxidant and anti-inflammatory activity, inhibits the turn-over of BMPR2 in human umbilical vein endothelial cells. Therefore, we hypothesized that MnTBAP might be used to treat PAH. Human pulmonary artery endothelial cells (PAECs), as well as pulmonary microvascular endothelial (MVECs) and smooth muscle cells (MVSMCs) from PAH patients, were treated with MnTBAP. In vivo, either saline or MnTBAP was given to PAH rats induced by Sugen 5416 and hypoxia (SuHx). On PAECs, MnTBAP was found to increase BMPR2 protein levels by blocking autophagy. Moreover, MnTBAP increased BMPR2 levels in pulmonary MVECs and MVSMCs isolated from PAH patients. In SuHx rats, MnTBAP reduced right ventricular (RV) afterload by reversing pulmonary vascular remodeling, including both intima and media layers. Furthermore, MnTBAP improved RV function and reversed RV dilation in SuHx rats. Taken together, these data highlight the importance of MnTBAP as a potential therapeutic treatment for PAH.


Asunto(s)
Metaloporfirinas/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Remodelación Vascular/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Pruebas de Función Cardíaca , Humanos , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/patología , Hipertensión Arterial Pulmonar/inducido químicamente , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Ratas Sprague-Dawley
18.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486169

RESUMEN

In vascular tissue engineering strategies, the addition of vascular-specific extracellular matrix (ECM) components may better mimic the in vivo microenvironment and potentially enhance cell-matrix interactions and subsequent tissue growth. For this purpose, the exact composition of the human vascular ECM first needs to be fully characterized. Most research has focused on characterizing ECM components in mature vascular tissue; however, the developing fetal ECM matches the active environment required in vascular tissue engineering more closely. Consequently, we characterized the ECM protein composition of active (fetal) and quiescent (mature) renal arteries using a proteome analysis of decellularized tissue. The obtained human fetal renal artery ECM proteome dataset contains higher levels of 15 ECM proteins versus the mature renal artery ECM proteome, whereas 16 ECM proteins showed higher levels in the mature tissue compared to fetal. Elastic ECM proteins EMILIN1 and FBN1 are significantly enriched in fetal renal arteries and are mainly produced by cells of mesenchymal origin. We functionally tested the role of EMILIN1 and FBN1 by anchoring the ECM secreted by vascular smooth muscle cells (SMCs) to glass coverslips. This ECM layer was depleted from either EMILIN1 or FBN1 by using siRNA targeting of the SMCs. Cultured endothelial cells (ECs) on this modified ECM layer showed alterations on the transcriptome level of multiple pathways, especially the Rho GTPase controlled pathways. However, no significant alterations in adhesion, migration or proliferation were observed when ECs were cultured on EMILIN1- or FNB1-deficient ECM. To conclude, the proteome analysis identified unique ECM proteins involved in the embryonic development of renal arteries. Alterations in transcriptome levels of ECs cultured on EMILIN1- or FBN1-deficient ECM showed that these candidate proteins could affect the endothelial (regenerative) response.


Asunto(s)
Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Fibrilina-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Arteria Renal/embriología , Arteria Renal/metabolismo , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Cromatografía Liquida , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Miocitos del Músculo Liso/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Ingeniería de Tejidos , Proteínas de Unión al GTP rho/metabolismo
19.
Circulation ; 137(9): 910-924, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29167228

RESUMEN

BACKGROUND: The beneficial effects of parasympathetic stimulation have been reported in left heart failure, but whether it would be beneficial for pulmonary arterial hypertension (PAH) remains to be explored. Here, we investigated the relationship between parasympathetic activity and right ventricular (RV) function in patients with PAH, and the potential therapeutic effects of pyridostigmine (PYR), an oral drug stimulating the parasympathetic activity through acetylcholinesterase inhibition, in experimental pulmonary hypertension (PH). METHODS: Heart rate recovery after a maximal cardiopulmonary exercise test was used as a surrogate for parasympathetic activity. RV ejection fraction was assessed in 112 patients with PAH. Expression of nicotinic (α-7 nicotinic acetylcholine receptor) and muscarinic (muscarinic acetylcholine type 2 receptor) receptors, and acetylcholinesterase activity were evaluated in RV (n=11) and lungs (n=7) from patients with PAH undergoing heart/lung transplantation and compared with tissue obtained from controls. In addition, we investigated the effects of PYR (40 mg/kg per day) in experimental PH. PH was induced in male rats by SU5416 (25 mg/kg subcutaneously) injection followed by 4 weeks of hypoxia. In a subgroup, sympathetic/parasympathetic modulation was assessed by power spectral analysis. At week 6, PH status was confirmed by echocardiography, and rats were randomly assigned to vehicle or treatment (both n=12). At the end of the study, echocardiography was repeated, with additional RV pressure-volume measurements, along with lung, RV histological, and protein analyses. RESULTS: Patients with PAH with lower RV ejection fraction (<41%) had a significantly reduced heart rate recovery in comparison with patients with higher RV ejection fraction. In PAH RV samples, α-7 nicotinic acetylcholine receptor was increased and acetylcholinesterase activity was reduced versus controls. No difference in muscarinic acetylcholine type 2 receptor expression was observed. Chronic PYR treatment in PH rats normalized the cardiovascular autonomic function, demonstrated by an increase in parasympathetic activity and baroreflex sensitivity. PYR improved survival, increased RV contractility, and reduced RV stiffness, RV hypertrophy, RV fibrosis, RV inflammation, and RV α-7 nicotinic acetylcholine receptor and muscarinic acetylcholine type 2 receptor expression, as well. Furthermore, PYR reduced pulmonary vascular resistance, RV afterload, and pulmonary vascular remodeling, which was associated with reduced local and systemic inflammation. CONCLUSIONS: RV dysfunction is associated with reduced systemic parasympathetic activity in patients with PAH, with an inadequate adaptive response of the cholinergic system in the RV. Enhancing parasympathetic activity by PYR improved survival, RV function, and pulmonary vascular remodeling in experimental PH.


Asunto(s)
Inhibidores de la Colinesterasa/uso terapéutico , Endotelio Vascular/patología , Hipertensión Pulmonar/metabolismo , Sistema Nervioso Parasimpático , Arteria Pulmonar/patología , Bromuro de Piridostigmina/uso terapéutico , Disfunción Ventricular Derecha/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Remodelación Vascular , Disfunción Ventricular Derecha/tratamiento farmacológico , Función Ventricular Derecha
20.
Eur Respir J ; 54(3)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31273046

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive fatal disease characterised by abnormal remodelling of pulmonary vessels, leading to increased vascular resistance and right ventricle failure. This abnormal vascular remodelling is associated with endothelial cell dysfunction, increased proliferation of smooth muscle cells, inflammation and impaired bone morphogenetic protein (BMP) signalling. Orphan nuclear receptor Nur77 is a key regulator of proliferation and inflammation in vascular cells, but its role in impaired BMP signalling and vascular remodelling in PAH is unknown.We hypothesised that activation of Nur77 by 6-mercaptopurine (6-MP) would improve PAH by inhibiting endothelial cell dysfunction and vascular remodelling.Nur77 expression is decreased in cultured pulmonary microvascular endothelial cells (MVECs) and lungs of PAH patients. Nur77 significantly increased BMP signalling and strongly decreased proliferation and inflammation in MVECs. In addition, conditioned medium from PAH MVECs overexpressing Nur77 inhibited the growth of healthy smooth muscle cells. Pharmacological activation of Nur77 by 6-MP markedly restored MVEC function by normalising proliferation, inflammation and BMP signalling. Finally, 6-MP prevented and reversed abnormal vascular remodelling and right ventricle hypertrophy in the Sugen/hypoxia rat model of severe angioproliferative PAH.Our data demonstrate that Nur77 is a critical modulator in PAH by inhibiting vascular remodelling and increasing BMP signalling, and activation of Nur77 could be a promising option for the treatment of PAH.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Mercaptopurina/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/agonistas , Animales , Proliferación Celular , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/efectos de los fármacos , Células HEK293 , Humanos , Inflamación , Pulmón/efectos de los fármacos , Masculino , Microcirculación , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Remodelación Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA