Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; : e2300361, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350726

RESUMEN

Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.

2.
Mol Cancer ; 23(1): 101, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745269

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have surpassed the number of protein-coding genes, yet the majority have no known function. We previously discovered 844 lncRNAs that were genetically linked to breast cancer through genome-wide association studies (GWAS). Here, we show that a subset of these lncRNAs alter breast cancer risk by modulating cell proliferation, and provide evidence that a reduced expression on one lncRNA increases breast cancer risk through aberrant DNA replication and repair. METHODS: We performed pooled CRISPR-Cas13d-based knockdown screens in breast cells to identify which of the 844 breast cancer-associated lncRNAs alter cell proliferation. We selected one of the lncRNAs that increased cell proliferation, KILR, for follow-up functional studies. KILR pull-down followed by mass spectrometry was used to identify binding proteins. Knockdown and overexpression studies were performed to assess the mechanism by which KILR regulates proliferation. RESULTS: We show that KILR functions as a tumor suppressor, safeguarding breast cells against uncontrolled proliferation. The half-life of KILR is significantly reduced by the risk haplotype, revealing an alternative mechanism by which variants alter cancer risk. Mechanistically, KILR sequesters RPA1, a subunit of the RPA complex required for DNA replication and repair. Reduced KILR expression promotes breast cancer cell proliferation by increasing the available pool of RPA1 and speed of DNA replication. Conversely, KILR overexpression promotes apoptosis in breast cancer cells, but not normal breast cells. CONCLUSIONS: Our results confirm lncRNAs as mediators of breast cancer risk, emphasize the need to annotate noncoding transcripts in relevant cell types when investigating GWAS variants and provide a scalable platform for mapping phenotypes associated with lncRNAs.


Asunto(s)
Neoplasias de la Mama , Sistemas CRISPR-Cas , Proliferación Celular , Reparación del ADN , Replicación del ADN , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo
3.
Mol Ther ; 31(3): 729-743, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560881

RESUMEN

Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.


Asunto(s)
Auranofina , Genes myc , Glutamina , Neoplasias Ováricas , Reductasa de Tiorredoxina-Disulfuro , Femenino , Humanos , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Genes myc/genética , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/genética , Glutamina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
4.
Mol Biol Evol ; 39(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069948

RESUMEN

Deep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, nonactive-site residues are tolerant to mutations. Here, we show that the ccdA antitoxin component of the Escherichia coli ccdAB toxin-antitoxin system is unusually sensitive to mutations when studied in the operonic context. A large fraction (∼80%) of single-codon mutations, including many synonymous mutations in the ccdA gene shows inactive phenotype, but they retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure/stability, consistent with a large region of CcdA being intrinsically disordered. E. coli codon preference and strength of ribosome-binding associated with translation of downstream ccdB gene are found to be major contributors of the observed ccdA mutant phenotypes. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that the ccdA mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by studying single-site synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their operonic context, genes are likely to be more sensitive to both synonymous and nonsynonymous point mutations than inferred previously.


Asunto(s)
Toxinas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Sistemas Toxina-Antitoxina , Proteínas Bacterianas , Toxinas Bacterianas/genética , Codón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación
5.
Biochem Biophys Res Commun ; 684: 149040, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-37897910

RESUMEN

In recent years, proteogenomics and ribosome profiling studies have identified a large number of proteins encoded by noncoding regions in the human genome. They are encoded by small open reading frames (sORFs) in the untranslated regions (UTRs) of mRNAs and long non-coding RNAs (lncRNAs). These sORF encoded proteins (SEPs) are often <150AA and show poor evolutionary conservation. A subset of them have been functionally characterized and shown to play an important role in fundamental biological processes including cardiac and muscle function, DNA repair, embryonic development and various human diseases. How many novel protein-coding regions exist in the human genome and what fraction of them are functionally important remains a mystery. In this review, we discuss current progress in unraveling SEPs, approaches used for their identification, their limitations and reliability of these identifications. We also discuss functionally characterized SEPs and their involvement in various biological processes and diseases. Lastly, we provide insights into their distinctive features compared to canonical proteins and challenges associated with annotating these in protein reference databases.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Humanos , Transcriptoma/genética , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados , ARN Largo no Codificante/genética , ARN Mensajero/genética
6.
Am J Med Genet A ; 191(3): 859-863, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538928

RESUMEN

Desmosterolosis is a rare autosomal recessive disorder of cholesterol biosynthesis resulting in multiple congenital abnormalities and syndromic intellectual disability. It is caused by defects in DHCR24, the gene encoding 3-ß-hydroxysterol-24-reductase (24-dehydrocholesterol reductase), which acts in conversion of cholesterol precursor desmosterol, hence resulting in elevated plasma desmosterol levels. To date, desmosterolosis has been reported in 10 patients. Here we report an eleventh patient with desmosterolosis, and the first one to be diagnosed antenatally. Diagnosis was made on whole exome sequencing after amniocentesis due to complex antenatal abnormalities including cerebellar hypoplasia, microgyria, aortic stenosis, and renal tract abnormalities. Sterol quantitation was subsequently done postnatally, which supported the diagnosis. Although the nonspecific features make desmosterolosis difficult to suspect, we demonstrate that disorders of cholesterol synthesis can be considered as a differential diagnosis antenatally.


Asunto(s)
Desmosterol , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Femenino , Embarazo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Secuenciación del Exoma , Colesterol , Oxidorreductasas
7.
Am J Med Genet A ; 188(1): 298-303, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558814

RESUMEN

An extremely preterm infant presented with clinical and radiological features of Robinow syndrome including butterfly vertebrae, posterior rib fusion, brachydactyly, nail hypoplasia, and retromicrognathia resulting in difficult endotracheal intubation in the intensive care setting. Rapid trio exome sequencing detected a novel homozygous likely pathogenic missense variant in the ROR2 gene, NM_004560.3:c.950A>G, p.(Tyr317Cys), for which both parents were heterozygous carriers. In-silico protein modeling predicted a deleterious effect on the function of the protein. We report an extreme premature infant with novel homozygous likely pathogenic variant in the ROR2 gene consistent with autosomal recessive Robinow syndrome. This case expands the phenotypic and genotypic spectrum of this disorder and highlights the benefit of performing rapid exome sequencing early during evaluation to aid in patient management and providing accurate genetic counseling to families.


Asunto(s)
Exoma , Recien Nacido Extremadamente Prematuro , Anomalías Craneofaciales , Enanismo , Exoma/genética , Humanos , Lactante , Recién Nacido , Deformidades Congénitas de las Extremidades , Mutación , Linaje , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Anomalías Urogenitales
8.
Mol Biol Rep ; 49(1): 821-826, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34727290

RESUMEN

BACKGROUND: The heterogeneity of breast tumors presents a challenge in disease management, necessitating an understanding of the molecular mechanisms driving breast tumorigenesis. Aberrant expression of microRNAs is known to promote tumor growth and progression. Our previous RNA-sequencing dataset revealed the upregulation of miR-362-5p and miR-454-3p in breast tumors. We investigated potential role of miR-362-5p and miR-454-3p in breast cancer using MDAMB231 and MCF7 cell lines. METHODS AND RESULTS: The expression of miR-362-5p and miR-454-3p were altered in MCF7 and MDAMB231 using mimics and inhibitors. The effect on cell viability, cell cycle progression and migration was assessed using Alamar blue assay, flow cytometry and wound healing assay. Further, the expression of potential target genes were measured using real-time PCR. Our results indicated that an increased expression of miR-362-5p promoted cell growth and survival in MCF7, but decreased cell migration. In contrast, miR-362-5p overexpression reduced cancer cell growth, survival and migration in MDAMB231. Overexpression of miR-454-3p was oncogenic in both cell lines but suppressed migration in the aggressive cell line MDAMB231. CONCLUSION: Two microRNAs, miR-362-5p and miR-454-3p, were evaluated for functional activity in breast cancer cell lines and they showed increased proliferative signals and tumorigenic properties.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular/genética , MicroARNs/metabolismo , Transducción de Señal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclo Celular/genética , Movimiento Celular/genética , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , MicroARNs/genética , Oncogenes , Interferencia de ARN , Transfección , Regulación hacia Arriba/genética
9.
Arch Dis Child Educ Pract Ed ; 107(4): 298-301, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832959

RESUMEN

There is increasing evidence reflected in both UK 2019 NICE and European guidelines suggesting that less invasive surfactant administration (LISA) reduces the need for mechanical ventilation and reduces the combined outcome of death or bronchopulmonary dysplasia, and is now the optimal method for surfactant delivery in spontaneously breathing babies. Despite this, uptake in England has been slow compared with Europe. This quality improvement project outlines the process of implementing LISA in a neonatal intensive care unit over a 2-year period, the barriers and challenges which were encountered, and how they were overcome.


Asunto(s)
Displasia Broncopulmonar , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Displasia Broncopulmonar/tratamiento farmacológico , Humanos , Recién Nacido , Recien Nacido Prematuro , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Tensoactivos/uso terapéutico
10.
Proteomics ; 21(19): e2100152, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390184

RESUMEN

Mass spectrometry-based proteomics revolutionized global proteomic profiling. Although high molecular weight abundant proteins are readily sampled in global proteomics studies, less abundant low molecular weight proteins are often underrepresented. This includes biologically important classes of low molecular weight proteins including ligands, growth factors, peptide hormones and cytokines. Although extensive fractionation can facilitate achieving better coverage of proteome, it requires additional infrastructure, mass spectrometry time and labour. There is need for a simple method that can selectively deplete high molecular weight abundant proteins and enrich for low molecular weight less abundant proteins to improve their coverage in proteomics studies. We present a simple organic-solvent based protein precipitation method that selectively depletes high molecular weight proteins and enriches low molecular weight proteins in the soluble fraction. Using this strategy, we demonstrate identification of low molecular weight proteins that are generally underrepresented in proteomics datasets. In addition, we show the utility of this approach in identifying functional cleavage products from precursor proteins and low molecular weight short open reading frame proteins encoded by non-coding regions such as lncRNAs and UTRs. As the method does not require additional infrastructure, it can complement existing proteomics workflows to increase detection and coverage of low molecular weight proteins that are less abundant.


Asunto(s)
Péptidos , Proteómica , Peso Molecular , Proteoma , Solventes
11.
J Proteome Res ; 20(5): 2687-2703, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33844560

RESUMEN

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death worldwide. We showed previously that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2), a serine-threonine kinase, is highly expressed in gastric cancer and leads to progression. In the present study, we identified the molecular networks involved in CAMKK2-mediated progression of gastric adenocarcinoma. Treatment of gastric cancer cell lines with a CAMKK2 inhibitor, STO-609, resulted in decreased cell migration, invasion, and colony-forming ability and a G1/S-phase arrest. In addition, tandem mass tag (TMT)-based quantitative proteomic analysis resulted in the identification of 7609 proteins, of which 219 proteins were found to be overexpressed and 718 downregulated (1.5-fold). Our data identified several key downregulated proteins involved in cell division and cell proliferation, which included DNA replication licensing factors, replication factor C, origin recognition complex, replication protein A and GINS, and mesenchymal markers, upon CAMKK2 inhibition. Immunoblotting and immunofluorescence results showed concordance with our mass spectroscopy data. Taken together, our study supports CAMKK2 as a novel therapeutic target in gastric cancer.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Neoplasias Gástricas , Calcio , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Carcinogénesis/genética , Humanos , Proteómica , Neoplasias Gástricas/genética
12.
J Cell Mol Med ; 25(8): 3912-3921, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33544410

RESUMEN

Breast cancer is a major cause of cancer-related death in women worldwide. Non-coding RNAs are a potential resource to be used as an early diagnostic biomarker for breast cancer. Circular RNAs are a recently identified group of non-coding RNA with a significant role in disease development with potential utility in diagnosis/prognosis in cancer. In this study, we identified 26 differentially expressed circular RNAs associated with early-stage breast cancer. RNA sequencing and two circRNA detection tools (find_circ and DCC) were used to understand the circRNA expression signature in breast cancer. We identified hsa_circ_0006743 (circJMJD1C) and hsa_circ_0002496 (circAPPBP1) to be significantly up-regulated in early-stage breast cancer tissues. Co-expression analysis identified four pairs of circRNA-miRNA (hsa_circ_0023990 : hsa-miR-548b-3p, hsa_circ_0016601 : hsa_miR-1246, hsa_circ_0001946 : hsa-miR-1299 and hsa_circ_0000117:hsa-miR-502-5p) having potential interaction. The miRNA target prediction and network analysis revealed mRNA possibly regulated by circRNAs. We have thus identified circRNAs of diagnostic implications in breast cancer and also observed circRNA-miRNA interaction which could be involved in breast cancer development.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Circular/genética , ARN Mensajero/genética , Neoplasias de la Mama/genética , Femenino , Humanos , Pronóstico , Análisis de Secuencia de ARN , Tasa de Supervivencia
13.
Mol Carcinog ; 60(11): 769-783, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34437731

RESUMEN

Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.


Asunto(s)
Bencimidazoles/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Naftalimidas/farmacología , Proteómica/métodos , Neoplasias Gástricas/metabolismo , Proteína Quinasa CDC2/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatografía Liquida , Quinasa 2 Dependiente de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Espectrometría de Masas en Tándem
14.
J Oral Pathol Med ; 50(5): 459-469, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33369783

RESUMEN

BACKGROUND: Tobacco consumption in smoking and non-smoking forms has been consequential in the rise of oral cancer cases. Among different forms, epidemiological studies from Middle Eastern countries and rural parts of northern India have reported increasing association of oral cancer with waterpipe (hookah) smoking. However, molecular mechanisms and role played by waterpipe smoking in the onset of oral carcinogenesis remains unexplored. METHODS: In this study, immortalized normal human oral keratinocytes were chronically treated with extracts of two varieties of waterpipe tobacco-crude tobacco and processed shisha. Phenotypic changes and molecular aberrations were examined using cell culture-based assays and mass spectrometry-based quantitative proteomic analysis, respectively. Bioinformatics analysis was utilized to analyze proteomics data and identify dysregulated pathways. RESULTS: Our data indicate that chronic treatment with waterpipe tobacco extracts increased proliferation, invasion, migration, and significant dysregulation of protein expression in oral keratinocytes. Altered expression of proteins involved in interferon signaling pathway were observed with both varieties of tobacco. Overexpression of cholesterol metabolism and vesicle-mediated transport proteins were identified exclusively in cells treated with crude tobacco extract. Bioinformatics analyses revealed different oncogenic response in oral cells based on the type of waterpipe tobacco used. CONCLUSIONS: This study may serve as a useful resource in understanding the early onset of oral cancer attributed to waterpipe smoking.


Asunto(s)
Pipas de Agua , Humanos , India , Queratinocitos , Extractos Vegetales/farmacología , Proteómica , Nicotiana , Uso de Tabaco
15.
Eur J Pediatr ; 180(12): 3587-3591, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34143244

RESUMEN

Diagnosing acutely unwell infants with a potential genetic diagnosis can be challenging for healthcare professionals. Evidence suggests that up to 13% of critically unwell infants on the neonatal intensive care unit (NICU) have an underlying molecular diagnosis and when identified directly affects treatment decisions in 83%. On 1st October 2019, the National Health Service England (NHSE) launched a nationally commissioned service so that rapid whole-exome sequencing can be offered to critically unwell babies and children with a likely monogenic disorder who are admitted to NICU and paediatric intensive care unit (PICU). We present 7 cases from two neonatal units in the West Midlands (UK), where rapid exome sequencing has revealed a genetic diagnosis. Early genetic diagnosis in this cohort has influenced management in all (100%) cases, and in 57% (4 in 7 cases), it has helped in the decision to reorientate care. In some cases, early diagnosis has reduced the need for invasive and unnecessary investigations and avoided the need for post-mortem investigations. The genetic diagnosis has helped in counselling the families regarding the recurrence risk for future pregnancies. In some cases, this has provided parents with the reassurance of a low recurrence. In others, it has resulted in the offer of prenatal diagnosis or assisted conception technologies. What is Known: • Rapid whole-exome sequencing was commissioned in the UK in October 2019. • It is available for critically unwell babies with a likely monogenic aetiology. What is New: • It helps management planning for rare genetic disorders and future pregnancies counselling. • It can reduce the need for invasive investigations and overall intensive care costs.


Asunto(s)
Exoma , Medicina Estatal , Niño , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Unidades de Cuidado Intensivo Pediátrico , Secuenciación del Exoma
16.
Genome Res ; 27(1): 133-144, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003436

RESUMEN

Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted "noncoding RNAs" to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.


Asunto(s)
Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular , Transcriptoma/genética , Animales , Anopheles/genética , Exones/genética , Perfilación de la Expresión Génica , Proteoma/genética , Proteómica
17.
Gastric Cancer ; 23(5): 796-810, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32333232

RESUMEN

BACKGROUND: Phosphorylation is an important regulatory mechanism of protein activity in cells. Studies in various cancers have reported perturbations in kinases resulting in aberrant phosphorylation of oncoproteins and tumor suppressor proteins. METHODS: In this study, we carried out quantitative phosphoproteomic analysis of gastric cancer tissues and corresponding xenograft samples. Using these data, we employed bioinformatics analysis to identify aberrant signaling pathways. We further performed molecular inhibition and silencing of the upstream regulatory kinase in gastric cancer cell lines and validated its effect on cellular phenotype. Through an ex vivo technology utilizing patient tumor and blood sample, we sought to understand the therapeutic potential of the kinase by recreating the tumor microenvironment. RESULTS: Using mass spectrometry-based high-throughput analysis, we identified 1,344 phosphosites and 848 phosphoproteins, including differential phosphorylation of 177 proteins (fold change cut-off ≥ 1.5). Our data showed that a subset of differentially phosphorylated proteins belonged to splicing machinery. Pathway analysis highlighted Cdc2-like kinase (CLK1) as upstream kinase. Inhibition of CLK1 using TG003 and CLK1 siRNA resulted in a decreased cell viability, proliferation, invasion and migration as well as modulation in the phosphorylation of SRSF2. Ex vivo experiments which utilizes patient's own tumor and blood to recreate the tumor microenvironment validated the use of CLK1 as a potential target for gastric cancer treatment. CONCLUSIONS: Our data indicates that CLK1 plays a crucial role in the regulation of splicing process in gastric cancer and that CLK1 can act as a novel therapeutic target in gastric cancer.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteoma/metabolismo , Neoplasias Gástricas/patología , Animales , Apoptosis , Biomarcadores de Tumor , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones SCID , Invasividad Neoplásica , Fosforilación , Pronóstico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteoma/análisis , ARN Interferente Pequeño/genética , Neoplasias Gástricas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Acta Paediatr ; 109(3): 505-510, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31471992

RESUMEN

AIM: National survey to evaluate the uptake of Less Invasive Surfactant Administration (LISA) in neonatal units across England. METHODS: A web-based survey was sent out by email to all 150 neonatal units in England. It consisted of questions regarding indications for LISA, the practicalities of the procedure and reasons for not using this technique. RESULTS: The response rate was 96% (144/150 units). Only 11% of units are using LISA, but majority (78%) would consider implementing LISA on their unit. 56% would also consider LISA on delivery suite. Challenges identified are having a guideline and staff training. 61% of units have set the target population ≥27 weeks. On sub-analysis, for tertiary units, the trend for LISA is ≥26 weeks. The median FiO2 threshold for LISA is 0.3 (IQR 0.3-0.4) in less than 28 weeks gestational age (GA), and 0.4 in higher gestations. The most common suggestion for premedication is fentanyl (32%). CONCLUSION: The uptake of LISA in England is low comparing to the rest of Europe. Even though many units are considering implementing LISA, there is lack of training and national guidelines. There is urgent need for standardisation of practice and clear indications for LISA.


Asunto(s)
Síndrome de Dificultad Respiratoria del Recién Nacido , Tensoactivos , Inglaterra , Europa (Continente) , Humanos , Recién Nacido , Recien Nacido Prematuro
20.
J Oral Pathol Med ; 48(4): 284-289, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30659648

RESUMEN

BACKGROUND: Tobacco is smoked in different form including cigarettes and water pipes. One popular form of water pipe smoking especially in Middle Eastern countries is shisha smoking. Shisha has been associated with various diseases including oral cancer. However, genomic alterations and gene expression changes associated with chronic shisha exposure have not been previously investigated. OBJECTIVES: Whole-exome sequencing and gene expression profiling of immortalized human oral keratinocytes (OKF6/TERT1) cells chronically treated with 0.5% shisha extract for a period of 8 months was undertaken to characterize molecular alterations associated with shisha exposure. METHODS: Genomic DNA and RNA were extracted and preprocessed as per manufacturer's instruction and subjected to whole-exome and transcriptome sequencing using Illumina HiSeq2500 platform. Exome was analyzed using GATK pipeline whereas RNA-Seq data was analyzed using HiSat2 and HTSeq along with DESeq to elucidate differentially expressed genes. RESULTS: Whole-exome sequence analysis led to identification of 521 somatic missense variants corresponding to 389 genes RNA-Seq data revealed 247 differentially expressed genes (≥2-fold, P-value<0.01) in shisha treated cells compared to parental cells. Pathway analysis of differentially expressed genes revealed that interferon-signaling pathway was significantly affected. We predict activation of MAPK1 pathway which is known to play a key role in oral cancer. We also observed allele specific expression of mutant LIMA1 based on RNA-Seq dataset. CONCLUSION: Our findings provide insights into genomic alterations and gene expression pattern associated with oral keratinocytes chronically exposed to shisha.


Asunto(s)
Queratinocitos , Neoplasias de la Boca/diagnóstico , Fumar en Pipa de Agua/efectos adversos , Células Cultivadas , Proteínas del Citoesqueleto/genética , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , RNA-Seq , Nicotiana , Transcriptoma , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA