Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 105(6): 2209-13, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18238904

RESUMEN

The capacity to use tools is a fundamental evolutionary achievement. Its essence stands in the capacity to transfer a proximal goal (grasp a tool) to a distal goal (e.g., grasp food). Where and how does this goal transfer occur? Here, we show that, in monkeys trained to use tools, cortical motor neurons, active during hand grasping, also become active during grasping with pliers, as if the pliers were now the hand fingers. This motor embodiment occurs both for normal pliers and for "reverse pliers," an implement that requires finger opening, instead of their closing, to grasp an object. We conclude that the capacity to use tools is based on an inherently goal-centered functional organization of primate cortical motor areas.


Asunto(s)
Corteza Motora/fisiología , Neuronas/fisiología , Animales , Electromiografía , Femenino , Macaca nemestrina , Masculino , Corteza Motora/citología
2.
J Physiol Paris ; 94(5-6): 569-82, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11165921

RESUMEN

Movement preparation is considered to be based on central processes which are responsible for improving motor performance. For instance, it has been shown that motor cortical neurones change their activity selectively in relation to prior information about movement parameters. However, it is not clear how groups of neurones dynamically organize their activity to cope with computational demands. The aim of the study was to compare the firing rate of multiple simultaneously recorded neurones with the interaction between them by describing not only the frequency of occurrence of epochs of significant synchronization, but also its modulation in time and its changes in temporal precision during an instructed delay. Multiple single-neurone activity was thus recorded in monkey motor cortex during the performance of two different delayed multi-directional pointing tasks. In order to detect conspicuous spike coincidences in simultaneously recorded spike trains by tolerating temporal jitter ranging from 0 to 20 ms and to calculate their statistical significance, a modified method of the 'Unitary Events' analysis was used. Two main results were obtained. First, simultaneously recorded neurones synchronize their spiking activity in a highly dynamic way. Synchronization becomes significant only during short periods (about 100 to 200 ms). Several such periods occurred during a behavioural trial more or less regularly. Second, in many pairs of neurones, the temporal precision of synchronous activity was highest at the end of the preparatory period. As a matter of fact, at the beginning of this period, after the presentation of the preparatory signal, neurones significantly synchronize their spiking activity, but with low temporal precision. As time advances, significant synchronization becomes more precise. Data indicate that not only the discharge rate is involved in preparatory processes, but also temporal aspects of neuronal activity as expressed in the precise synchronization of individual action potentials.


Asunto(s)
Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Animales , Electrofisiología/métodos , Lateralidad Funcional , Macaca mulatta , Modelos Estadísticos , Probabilidad , Tiempo de Reacción
3.
J Neurosci Methods ; 94(1): 67-79, 1999 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10638816

RESUMEN

In earlier studies we developed the 'Unitary Events' analysis (Grün S. Unitary Joint-Events in Multiple-Neuron Spiking Activity: Detection, Significance and Interpretation. Reihe Physik, Band 60. Thun, Frankfurt/Main: Verlag Harri Deutsch, 1996.) to detect the presence of conspicuous spike coincidences in multiple single unit recordings and to evaluate their statistical significance. The method enabled us to study the relation between spike synchronization and behavioral events (Riehle A, Grün S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 1997;278:1950-1953.). There is recent experimental evidence that the timing accuracy of coincident spiking events, which might be relevant for higher brain function, may be in the range of 1-5 ms. To detect coincidences on that time scale, we sectioned the observation interval into short disjunct time slices ('bins'). Unitary Events analysis of this discretized process demonstrated that coincident events can indeed be reliably detected. However, the method looses sensitivity for higher temporal jitter of the events constituting the coincidences (Grün S. Unitary Joint-Events in Multiple-Neuron Spiking Activity: Detection, Significance and Interpretation. Reihe Physik, Band 60. Thun, Frankfurt/Main: Verlag Harri Deutsch, 1996.). Here we present a new approach, the 'multiple shift' method (MS), which overcomes the need for binning and treats the data in their (original) high time resolution (typically 1 ms, or better). Technically, coincidences are detected by shifting the spike trains against each other over the range of allowed coincidence width and integrating the number of exact coincidences (on the time resolution of the data) over all shifts. We found that the new method enhances the sensitivity for coincidences with temporal jitter. Both methods are outlined and compared on the basis of their analytical description and their application on simulated data. The performance on experimental data is illustrated.


Asunto(s)
Modelos Neurológicos , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Simulación por Computador , Factores de Tiempo
4.
Biol Cybern ; 88(5): 360-73, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12750898

RESUMEN

We studied the dynamics of precise spike synchronization and rate modulation in a population of neurons recorded in monkey motor cortex during performance of a delayed multidirectional pointing task and determined their relation to behavior. We showed that at the population level neurons coherently synchronized their activity at various moments during the trial in relation to relevant task events. The comparison of the time course of the modulation of synchronous activity with that of the firing rate of the same neurons revealed a considerable difference. Indeed, when synchronous activity was highest, at the end of the preparatory period, firing rate was low, and, conversely, when the firing rate was highest, at movement onset, synchronous activity was almost absent. There was a clear tendency for synchrony to precede firing rate, suggesting that the coherent activation of cell assemblies may trigger the increase in firing rate in large groups of neurons, although it appeared that there was no simple parallel shifting in time of these two activity measures. Interestingly, there was a systematic relationship between the amount of significant synchronous activity within the population of neurons and movement direction at the end of the preparatory period. Furthermore, about 400 ms later, at movement onset, the mean firing rate of the same population was also significantly tuned to movement direction, having roughly the same preferred direction as synchronous activity. Finally, reaction time measurements revealed a directional preference of the monkey with, once again, the same preferred direction as synchronous activity and firing rate. These results lead us to speculate that synchronous activity and firing rate are cooperative neuronal processes and that the directional matching of our three measures--firing rate, synchronicity, and reaction times--might be an effect of behaviorally induced network cooperativity acquired during learning.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Animales , Sincronización Cortical , Macaca mulatta , Masculino , Actividad Motora/fisiología , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Tiempo de Reacción , Percepción Visual/fisiología
5.
Exp Brain Res ; 128(1-2): 118-22, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10473749

RESUMEN

It is commonly accepted that perceptually and behaviorally relevant events are reflected in changes of activity in largely distributed neuronal populations. However, it is much less clear how these populations organize dynamically to cope with momentary computational demands. In order to decipher the dynamic organization of cortical ensembles, the activities of up to seven neurons of the primary motor cortex were recorded simultaneously. A monkey was trained to perform a pointing task in six directions. During each trial, two signals were presented consecutively. The first signal provided prior information about the movement direction, whereas the second called for the execution of that movement. Dynamic interactions between the activity of simultaneously recorded neurons were studied by analyzing individual epochs of synchronized firing ("unitary events"). Unitary events were defined as synchronizations which occur significantly more often than expected by chance on the basis of the neurons' firing rates. The aim of the study was to describe the relationships between synchronization dynamics and changes in activity of the same neurons during the preparation and execution of voluntary movements. The data show that even neurons which were classified, on the basis of the change in their firing rate, to be functionally involved in different processes (e.g., preparation or execution related, different directional tuning) synchronized their spiking activity significantly. These findings indicate that the synchronization of individual action potentials and the modulation of the firing rate may serve different and complementary functions underlying the cortical organization of cognitive motor processes.


Asunto(s)
Adaptación Fisiológica , Sincronización Cortical , Potenciales Evocados Visuales/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Animales , Macaca mulatta , Corteza Motora/citología , Neuronas/fisiología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA