Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382573

RESUMEN

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Asunto(s)
Clima , Orchidaceae , Australia , Filogenia , Filogeografía , Orchidaceae/genética
2.
Ann Bot ; 131(4): 635-654, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36681900

RESUMEN

BACKGROUND AND AIMS: Among the numerous pantropical species of the yam genus, Dioscorea, only a small group occurs in the Mediterranean basin, including two narrow Pyrenean endemics (Borderea clade) and two Mediterranean-wide species (D. communis and D. orientalis, Tamus clade). However, several currently unrecognized species and infraspecific taxa have been described in the Tamus clade due to significant morphological variation associated with D. communis. Our overarching aim was to investigate taxon delimitation in the Tamus clade using an integrative approach combining phylogenomic, spatial and morphological data. METHODS: We analysed 76 herbarium samples using Hyb-Seq genomic capture to sequence 260 low-copy nuclear genes and plastomes, together with morphometric and environmental modelling approaches. KEY RESULTS: Phylogenomic reconstructions confirmed that the two previously accepted species of the Tamus clade, D. communis and D. orientalis, are monophyletic and form sister clades. Three subclades showing distinctive geographic patterns were identified within D. communis. These subclades were also identifiable from morphometric and climatic data, and introgression patterns were inferred between subclades in the eastern part of the distribution of D. communis. CONCLUSIONS: We propose a taxonomy that maintains D. orientalis, endemic to the eastern Mediterranean region, and splits D. communis sensu lato into three species: D. edulis, endemic to Macaronesia (Canary Islands and Madeira); D. cretica, endemic to the eastern Mediterranean region; and D. communis sensu stricto, widespread across western and central Europe. Introgression inferred between D. communis s.s. and D. cretica is likely to be explained by their relatively recent speciation at the end of the Miocene, disjunct isolation in eastern and western Mediterranean glacial refugia and a subsequent westward recolonization of D. communis s.s. Our study shows that the use of integrated genomic, spatial and morphological approaches allows a more robust definition of species boundaries and the identification of species that previous systematic studies failed to uncover.


Asunto(s)
Dioscorea , Dioscoreaceae , Tamus , Dioscorea/genética , Filogenia , Genómica , Filogeografía
3.
Mol Biol Evol ; 38(10): 4475-4492, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34191029

RESUMEN

The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.


Asunto(s)
Phoeniceae , Domesticación , Egipto , Phoeniceae/genética , Fitomejoramiento , Hojas de la Planta/genética
4.
J Phycol ; 58(5): 643-656, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35861132

RESUMEN

In contrast to surveys based on a few genes that often provide limited taxonomic resolution, transcriptomes provide a wealth of genomic loci that can resolve relationships among taxonomically challenging lineages. Diatoms are a diverse group of aquatic microalgae that includes important bioindicator species and many such lineages. One example is Nitzschia palea, a widespread species complex with several morphologically defined taxonomic varieties, some of which are critical pollution indicators. Morphological differences among the varieties are subtle and phylogenetic studies based on a few genes fail to resolve their evolutionary relationships. We conducted morphometric and transcriptome analyses of 10 Nitzschia palea strains to resolve the relationships among strains and taxonomic varieties. Nitzschia palea was resolved into three clades, one of which corresponds to a group of strains with narrow linear-lanceolate valves. The other morphological group recovered in the shape outline analysis was not monophyletic and consisted of two clades. Gene-tree concordance analyses and phylogenetic network estimations revealed patterns of incomplete lineage sorting and gene flow between intraspecific lineages. We detected reticulated evolutionary patterns among lineages with different morphologies, resulting in a putative recent hybrid. Our study shows that phylogenomic analyses of unlinked nuclear loci, complemented with morphometrics, can resolve complex evolutionary histories of recently diverged species complexes.


Asunto(s)
Diatomeas , Evolución Biológica , Diatomeas/genética , Flujo Génico , Genoma , Filogenia
5.
Mol Ecol ; 30(8): 1791-1805, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33587812

RESUMEN

Orchids differ from other plants in their extremely small and partly air-filled seeds that can be transported long distances by wind. Seed dispersal in orchids is expected to contribute strongly to overall gene flow, and orchids generally express low levels of genetic differentiation between populations and low pollen to seed flow ratios. However, studies in orchids distributed in northern Europe have often found a poor geographic structuring of genetic variation. Here, we studied geographic differentiation in the marsh orchid Dactylorhiza umbrosa, which is widely distributed in upland regions from Asia Minor to Central Asia. These areas were less affected by Pleistocene ice ages than northern Europe and the orchid should have been able to survive the last ice age in local refugia. In the plastid genome, which is dispersed by seeds, populations at close distance were clearly divergent, but the differentiation still increased with geographic distance, and a significant phylogeographic structure had developed. In the nuclear genome, which is dispersed by both seeds and pollen, populations showed an even stronger correlation between genetic and geographic distance, but average levels of differentiation were lower than in the plastid genome, and no phylogeographic structure was evident. Combining plastid and nuclear data, we found that the ratio of pollen to seed dispersal (mp/ms) decreases with physical distance. Comparison with orchids that grow in parts of Europe that were glaciated during the last ice suggests that a balanced structure of genetic diversity develops only slowly in many terrestrial orchids, despite efficient seed dispersal.


Asunto(s)
Dispersión de Semillas , Humedales , Asia , Europa (Continente) , Flujo Génico , Variación Genética , Polen/genética , Semillas
6.
Am J Bot ; 108(7): 1166-1180, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34250591

RESUMEN

PREMISE: The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS: We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS: Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS: Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.


Asunto(s)
Genoma de Plastidios , Orchidaceae , Núcleo Celular/genética , Orchidaceae/genética , Filogenia , Plastidios/genética
7.
Nature ; 524(7565): 347-50, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26266979

RESUMEN

Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.


Asunto(s)
Altitud , Biota , Especies Introducidas/estadística & datos numéricos , Filogenia , Filogeografía , Clima Tropical , Migración Animal , Animales , Cambio Climático , Código de Barras del ADN Taxonómico , Extinción Biológica , Malasia , Datos de Secuencia Molecular , Plantas/clasificación , Plantas/genética , Factores de Tiempo
8.
BMC Genomics ; 19(1): 578, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30068293

RESUMEN

BACKGROUND: Satellite DNA is a rapidly diverging, largely repetitive DNA component of many eukaryotic genomes. Here we analyse the evolutionary dynamics of a satellite DNA repeat in the genomes of a group of Asian subtropical lady slipper orchids (Paphiopedilum subgenus Parvisepalum and representative species in the other subgenera/sections across the genus). A new satellite repeat in Paphiopedilum subgenus Parvisepalum, SatA, was identified and characterized using the RepeatExplorer pipeline in HiSeq Illumina reads from P. armeniacum (2n = 26). Reconstructed monomers were used to design a satellite-specific fluorescent in situ hybridization (FISH) probe. The data were also analysed within a phylogenetic framework built using the internal transcribed spacer (ITS) sequences of 45S nuclear ribosomal DNA. RESULTS: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin-loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26-28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific. CONCLUSIONS: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data.


Asunto(s)
ADN Satélite/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hibridación Fluorescente in Situ/métodos , Orchidaceae/genética , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico , ADN de Plantas/genética , ADN Ribosómico/genética , Evolución Molecular , Filogenia , ARN Ribosómico/genética , Especificidad de la Especie
9.
Mol Phylogenet Evol ; 129: 27-47, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30041026

RESUMEN

Phylogenetic relationships in species complexes and lineages derived from rapid diversifications are often challenging to resolve using morphology or standard DNA barcoding markers. The hyper-diverse genus Lepanthes from Neotropical cloud forest includes over 1200 species and many recent, explosive diversifications that have resulted in poorly supported nodes and morphological convergence across clades. Here, we assess the performance of 446 nuclear-plastid-mitochondrial markers derived from an anchored hybrid enrichment approach (AHE) coupled with coalescence- and species network-based inferences to resolve phylogenetic relationships and improve species recognition in the Lepanthes horrida species group. In addition to using orchid-specific probes to increase enrichment efficiency, we improved gene tree resolution by extending standard angiosperm targets into adjacent exons. We found high topological discordance among individual gene trees, suggesting that hybridization/polyploidy may have promoted speciation in the lineage via formation of new hybrid taxa. In addition, we identified ten loci with the highest phylogenetic informativeness values from these genomes. Most previous phylogenetic sampling in the Pleurothallidinae relies on two regions (ITS and matK), therefore, the evaluation of other markers such as those shown here may be useful in future phylogenetic studies in the orchid family. Coalescent-based species tree estimation methods resolved the phylogenetic relationships of the L. horrida species group. The resolution of the phylogenetic estimations was improved with the inclusion of extended anchor targets. This approach produced longer loci with higher discriminative power. These analyses also disclosed two undescribed species, L. amicitiae and L. genetoapophantica, formally described here, which are also supported by morphology. Our study demonstrates the utility of combined genomic evidence to disentangle phylogenetic relationships at very shallow levels of the tree of life, and in clades showing convergent trait evolution. With a fully resolved phylogeny, is it possible to disentangle traits evolving in parallel or convergently across these orchid lineages such as flower color and size from diagnostic traits such as the shape and orientation of the lobes of the petals and lip.


Asunto(s)
Núcleo Celular/genética , Hibridación Genética , Mitocondrias/genética , Orchidaceae/genética , Plastidios/genética , Análisis por Conglomerados , Bases de Datos Genéticas , Flores/anatomía & histología , Sitios Genéticos , Marcadores Genéticos , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie
10.
BMC Evol Biol ; 17(1): 89, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335712

RESUMEN

BACKGROUND: Thousands of flowering plant species attract pollinators without offering rewards, but the evolution of this deceit is poorly understood. Rewardless flowers of the orchid Erycina pusilla have an enlarged median sepal and incised median petal ('lip') to attract oil-collecting bees. These bees also forage on similar looking but rewarding Malpighiaceae flowers that have five unequally sized petals and gland-carrying sepals. The lip of E. pusilla has a 'callus' that, together with winged 'stelidia', mimics these glands. Different hypotheses exist about the evolutionary origin of the median sepal, callus and stelidia of orchid flowers. RESULTS: The evolutionary origin of these organs was investigated using a combination of morphological, molecular and phylogenetic techniques to a developmental series of floral buds of E. pusilla. The vascular bundle of the median sepal indicates it is a first whorl organ but its convex epidermal cells reflect convergence of petaloid features. Expression of AGL6 EpMADS4 and APETALA3 EpMADS14 is low in the median sepal, possibly correlating with its petaloid appearance. A vascular bundle indicating second whorl derivation leads to the lip. AGL6 EpMADS5 and APETALA3 EpMADS13 are most highly expressed in lip and callus, consistent with current models for lip identity. Six vascular bundles, indicating a stamen-derived origin, lead to the callus, stelidia and stamen. AGAMOUS is not expressed in the callus, consistent with its sterilization. Out of three copies of AGAMOUS and four copies of SEPALLATA, EpMADS22 and EpMADS6 are most highly expressed in the stamen. Another copy of AGAMOUS, EpMADS20, and the single copy of SEEDSTICK, EpMADS23, are most highly expressed in the stelidia, suggesting EpMADS22 may be required for fertile stamens. CONCLUSIONS: The median sepal, callus and stelidia of E. pusilla appear to be derived from a sepal, a stamen that gained petal identity, and stamens, respectively. Duplications, diversifying selection and changes in spatial expression of different MADS-box genes shaped these organs, enabling the rewardless flowers of E. pusilla to mimic an unrelated rewarding flower for pollinator attraction. These genetic changes are not incorporated in current models and urge for a rethinking of the evolution of deceptive flowers.


Asunto(s)
Mimetismo Biológico , Flores/anatomía & histología , Orchidaceae/anatomía & histología , Orchidaceae/genética , Animales , Abejas/anatomía & histología , Evolución Biológica , Evolución Molecular , Flores/genética , Proteínas de Dominio MADS/genética , Orchidaceae/clasificación , Filogenia , Proteínas de Plantas/genética , Polinización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA