RESUMEN
OBJECTIVES: To investigate the effects of dietary folate and sex on histopathology of oral squamous cell carcinoma in mice. MATERIALS AND METHODS: Mice (C57Bl/6, 30/sex) were fed either a deficient folate or sufficient folate diet. Vehicle or 4-nitroquinoline1-oxide (50 µg/mL) in vehicle were administered in drinking water for 20 weeks, followed by 6 weeks of regular drinking water. Oral lesions were observed weekly. Tongues were studied for histopathologic changes. Immunohistochemical techniques were used to measure cell proliferation (Ki67+), and to quantify expression of folate receptor, reduced folate carrier, and proton-coupled folate transporter. T cells, macrophages, and neutrophils were counted and normalized to area. RESULTS: All 4NQO-treated mice developed oral tumors. Dietary folate level did not affect tumor burden. More tumors were observed on the ventral aspect of the tongue than in other locations within the oral cavity. 4-nitroquinoline-1-oxide-treated mice displayed 27%-46% significantly lower expression of all three folate transport proteins; diet and sex had no effect on folate transporter expression. T-cell and neutrophil infiltration in tongues were 9.1-fold and 18.1-fold increased in the 4-nitroquinoline-1-oxide-treated mouse tongues than in controls. CONCLUSION: Treatment with 4NQO was the primary factor in determining cancer development, decreased folate transport expression, and lymphoid cell infiltration.
RESUMEN
OBJECTIVE: To compare the effects of dietary fat and sex on murine oral squamous cell carcinoma pathology. MATERIALS AND METHODS: Male and female C57Bl/6 mice (36/sex) received a low-fat (10 kcal%) or high-fat (60 kcal%) diet. Water (control), vehicle, or 4-nitroquinoline-1-oxide in vehicle (50 µg/ml) was provided for 17 weeks followed by six additional weeks of water. Oral lesion development was recorded weekly. Histopathologic changes in tongues were examined, and T cells (CD3+), macrophages (CD68+), and neutrophils (Ly6+) were quantified. RESULTS: All 4-nitroquinoline-1-oxide-treated mice developed oral tumors. High-fat diet exacerbated pathology, demonstrated by an increased final tumor burden (10.9 ± 4.5 vs. 7.9 ± 2.5, mm/mouse, p < .05; high-fat diet vs. low-fat diet, respectively), and a greater histopathology score. When dietary groups were combined, 4-nitroquinoline-1-oxide-treated males displayed higher histopathology scores than females (4.2 ± 0.3 vs. 3.6 ± 0.2, respectively, p < .05). Lymphoid cell infiltration was greater in the 4-nitroquinoline-1-oxide mouse tongues than controls: T cells (14.0 vs. 0.96 cells/mm2 ), macrophages (3.6 vs. 1.8 cells/mm2 ), and neutrophils (12.0 vs. 0.38 cells/mm2 ). CONCLUSION: High-fat diet and male sex increased the pathology of 4-nitroquinoline-1-oxide-induced oral cancer. Elevated lymphoid cell infiltration contributed to disease pathology.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Neoplasias de la Lengua , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Grasas de la Dieta/efectos adversos , Femenino , Masculino , Ratones , Neoplasias de la Boca/inducido químicamenteRESUMEN
C4-phenylthio ß-lactams are a new family of antibacterial agents that have activity against two phylogenetically distant bacteria - Mycobacterium tuberculosis (Mtb) and Moraxella catarrhalis (M. cat). These compounds are effective against ß-lactamase producing Mtb and M. cat unlike the clinically relevant ß-lactam antibiotics. The structure-activity relationship for the C4 phenylthio ß-lactams has not yet been completely defined. Earlier efforts in our laboratories established that the C4-phenylthio substituent is essential for antimicrobial activity, while the N1 carbamyl substituent plays a more subtle role. In this present study, we investigated the role that the stereochemistry at C4 plays in these compounds' antibacterial activity. This was achieved by synthesizing and testing the antimicrobial activity of diastereomers with a chiral carbamyl group at N1. Our findings indicate that a strict stereochemistry for the C4-phenylthio ß-lactams is not required to obtain optimal anti-Mtb and anti-M. cat activity. Furthermore, the structure-bioactivity profiles more closely relate to the electronic requirement of the phenylthiogroup. In addition, the MICs of Mtb are sensitive to growth medium composition. Select compounds showed activity against non-replicating and multi-drug resistant Mtb.
Asunto(s)
Antibacterianos/farmacología , Moraxella catarrhalis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos de Sulfhidrilo/farmacología , beta-Lactamas/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Moraxella catarrhalis/crecimiento & desarrollo , Mycobacterium tuberculosis/crecimiento & desarrollo , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química , beta-Lactamas/síntesis química , beta-Lactamas/químicaRESUMEN
Biofilm matrix formation is a phenotype linked to the ability to survive a hostile host environment that includes the presence of antimicrobial peptides and serum factors. Multiple hormones and other host derived factors have been shown to function as exogenous quorum signaling compound homologs that inform microbes of their in situ presence, thus triggering a shift from a planktonic to the sessile biofilm phenotype. The focus of this review is to describe the impact various host-derived factors have on the initial steps required for biofilm formation, i.e., adherence to host surfaces and multiplication in the host.
Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Hongos/fisiología , Interacciones Huésped-Patógeno , Animales , Humanos , Percepción de Quorum/efectos de los fármacosRESUMEN
The prevalence of drug resistance in both clinical and community settings as a consequence of alterations of biosynthetic pathways, enzymes or cell wall architecture is a persistent threat to human health. We have designed, synthesized, and tested a novel class of non-transpeptidase, ß-lactamase resistant monocyclic ß-lactams that carry an arylthio group at C4. These thioethers exhibit inhibitory and cidal activity against serine ß-lactamase producing Mycobacterium tuberculosis wild type strain (Mtb) and multiple (n=8) ß-lactamase producing Moraxella catarrhalis clinical isolates.
Asunto(s)
Antibacterianos/farmacología , Moraxella catarrhalis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , beta-Lactamas/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Moraxella catarrhalis/enzimología , Mycobacterium tuberculosis/enzimología , beta-Lactamas/química , beta-Lactamas/metabolismoRESUMEN
Risk factors for liver cancer include tobacco use, alcohol consumption, obesity, and male sex. Administration of 4-nitroquinonline-1-oxide (4NQO) in drinking water mimics the effects of tobacco and leads to oral carcinoma in mice. This study compared the effects of diets high and low in saturated fat (HF and LF, respectively), and sex, on liver histopathology in 4NQO-treated mice and controls. We hypothesized that 4NQO would cause histopathological changes in liver, and that a HF diet would increase hepatic pathology when compared to the LF diet. Mice (C57Bl/6, 36/sex), were divided into a low fat (10 kcal% fat; LF) or high fat (60 kcal% fat, HF) diet. Mice were further subdivided into one of 3 water treatment groups for 17 weeks: water (control), vehicle (1.25% propylene glycol in water [PG]), or 4NQO in (50 µg/ml; 4NQO). All mice were subsequently given water alone for 6 more weeks. Upon euthanasia, livers were harvested, fixed, sectioned, and stained with hematoxylin and eosin (H&E). H&E slides were graded for histopathology; frozen liver samples were analyzed for triglyceride content. Trichrome stained sections were graded for fibrosis. CD3+ T cells, CD68+ macrophages, and Ly6+ neutrophils were detected by immunohistochemistry. Compared to water controls, 4NQO-treatment caused mouse liver histopathological changes such as fibrosis, and increases in hepatic neutrophils, T cells, and macrophages. HF diet exacerbated pathological changes compared to LF diet. Male controls, but not females, demonstrated severe steatosis and increased triglyceride content. 4NQO treatment decreased hepatic fat accumulation, even in animals on a HF diet. In conclusion, this murine model of oral cancer may serve as a model to study the effects of tobacco and diet on liver.
Asunto(s)
4-Nitroquinolina-1-Óxido , Grasas de la Dieta , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Fibrosis , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , TriglicéridosRESUMEN
Antimicrobial resistance represents a global threat to healthcare. The ability to adequately treat infectious diseases is increasingly under siege due to the emergence of drug-resistant microorganisms. New approaches to drug development are especially needed to target organisms that exhibit broad antibiotic resistance due to expression of ß-lactamases which is the most common mechanism by which bacteria become resistant to ß-lactam antibiotics. We designed and synthesized 20 novel monocyclic ß-lactams with alkyl- and aryl-thio moieties at C4, and subsequently tested these for antibacterial activity. These compounds demonstrated intrinsic activity against serine ß-lactamase producing Mycobacterium tuberculosis wild type strain (Mtb) and multiple (n=6) ß-lactamase producing Moraxella catarrhalis clinical isolates.
Asunto(s)
Antibacterianos/farmacología , Moraxella catarrhalis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos de Sulfhidrilo/farmacología , beta-Lactamas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Moraxella catarrhalis/enzimología , Mycobacterium tuberculosis/enzimología , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química , beta-Lactamasas/biosíntesis , beta-Lactamasas/química , beta-Lactamas/síntesis química , beta-Lactamas/químicaRESUMEN
The abg locus of the Escherichia coli chromosome includes three genes encoding proteins (AbgA, AbgB, and AbgT) that enable uptake and utilization of the folate breakdown product, p-aminobenzoyl-glutamate (PABA-GLU). We report on the purification and characterization of the p-aminobenzoyl-glutamate hydrolase (PGH) holoenzyme encoded by abgA and abgB. One-step purification was accomplished using a plasmid carrying abgAB with a hexahistidine tag on the carboxyl terminus of AbgB and subsequent metal affinity chromatography (MAC). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed two subunits (approximately 53-kDa and approximately 47-kDa proteins) of the expected masses of AbgB and AbgA; N-terminal sequencing confirmed the subunit identification, and amino acid analysis yielded a 1:1 ratio of the subunits. Size exclusion chromatography coupled with light-scattering analysis of purified PGH revealed a predominant molecular mass of 206 kDa and a minor component of 400 to 500 kDa. Both peaks contained PGH activity, and SDS-PAGE revealed that fractions containing activity were composed of both AbgA and AbgB. MAC-purified PGH was highly stimulated by manganese chloride. Kinetic analysis of MAC-purified PGH revealed a K(m) value for PABA-GLU of 60 +/- 0.08 microM and a specific activity of 63,300 +/- 600 nmol min(-1) mg(-1). Folic acid and a variety of dipeptides served as poor substrates of PGH. This locus of the E. coli chromosome may encode a portion of a folate catabolism pathway.
Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Ácido Fólico/metabolismo , Hidrolasas/metabolismo , gamma-Glutamil Hidrolasa/metabolismo , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/metabolismo , Cromatografía de Afinidad , Cromatografía en Gel , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Ácido Fólico/química , Hidrolasas/aislamiento & purificación , Cinética , Estructura Molecular , Reacción en Cadena de la Polimerasa , gamma-Glutamil Hidrolasa/aislamiento & purificaciónRESUMEN
Objective. To evaluate the short-term effectiveness of an online bridging course to increase the knowledge of struggling incoming students' in crucial content areas within the Doctor of Pharmacy (PharmD) curriculum. Methods. An assessment was administered to all incoming first-year pharmacy students (N=180) during orientation to determine their foundational knowledge in key areas. Students who scored <70% on the assessment (N=137) were instructed to complete a 10-module, online, self-directed bridging course focusing on physiology, biochemistry, math, and medical terminology during the first two weeks of the quarter to prepare them for first-quarter coursework. After completing the bridging course, participants completed the same assessment to determine content knowledge acquisition and retention. At the end of the quarter, the assessment was again administered to all first-year students, regardless of whether they had completed the bridging course. Results. The average assessment score of students who completed the bridging course modules improved significantly (53% vs 76%). All students demonstrated significant improvement in assessment scores between orientation and the end of the quarter; however, bridging course participants achieved a greater increase in assessment scores (53% vs 73%) than nonparticipants (76% vs 81%). Significant relationships were found between assessment scores following completion of the bridging course and pass rates in first-quarter courses. Conclusion. The online, self-directed bridging course offered at Midwestern University, Chicago College of Pharmacy proved successful as a method of knowledge acquisition and as a system for early identification (within the first two weeks of the quarter) of students in need of additional academic support.
Asunto(s)
Educación de Postgrado en Farmacia/métodos , Adulto , Curriculum , Evaluación Educacional/métodos , Femenino , Humanos , Conocimiento , Masculino , Farmacia , Estudiantes de Farmacia , Adulto JovenRESUMEN
OBJECTIVES: The purpose of this study was to assess the expression of the 3 major folate transporters-folate receptors (FRs), reduced folate carrier (RFC), and proton-coupled folate transporter (PCFT)-in oral squamous cell carcinoma (OSCC). We hypothesized that patterns of expression of folate transporters would be different in OSCC compared with normal oral epithelium. STUDY DESIGN: We used immunohistochemistry to examine the expression of FR, RFC, and PCFT in 15 primary specimens collected from patients with OSCC, 2 human cadaveric samples of OSCC, and 12 normal human cadaveric oral tissues from a medical gross anatomy laboratory. Possible correlations between the expression of each folate transporter and patients' clinical data were determined. RESULTS: All 3 folate transporters were highly expressed in normal oral epithelium. In contrast, OSCC samples generally demonstrated low expression of FR, RFC, and PCFT, with wide distribution in the invading cancer cells. There were no differences in folate transporter expression between OSCC samples collected from patients and from human cadavers. The lowest expression of FR and PCFT characterized less-differentiated tumors, and the lowest expression of RFC correlated with higher lymph node involvement. CONCLUSIONS: Human oral cancer samples expressed decreased amounts of all 3 major folate transport proteins compared with controls from normal cadaveric oral tissues.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Ácido Fólico , Antagonistas del Ácido Fólico , Transportadores de Ácido Fólico , Humanos , Proteína Portadora de Folato ReducidoRESUMEN
Reduced folic acid derivatives support biosynthesis of DNA, RNA and amino acids in bacteria as well as in eukaryotes, including humans. While the genes and steps for bacterial folic acid synthesis are known, those associated with folic acid catabolism are not well understood. A folate catabolite found in both humans and bacteria is p-aminobenzoyl-glutamate (PABA-GLU). The enzyme p-aminobenzoyl-glutamate hydrolase (PGH) breaks down PABA-GLU and is part of an apparent operon, the abg region, in E. coli. The subunits of PGH possess sequence and catalytic similarities to carboxypeptidase enzymes from Pseudomonas species. A comparison of the subunit sequences and activity of PGH, relative to carboxypeptidase enzymes, may lead to a better understanding of bacterial physiology and pathway evolution. We first compared the amino acid sequences of AbgA, AbgB and carboxypeptidase G2 from Pseudomonas sp. RS-16, which has been crystallized. Then we compared the enzyme activities of E. coli PGH and commercially available Pseudomonas carboxypeptidase G using spectrophotometric assays measuring cleavage of PABA-GLU, folate, aminopterin, methotrexate, 5-formyltetrahydrofolate, and 5-methyltetrahydrofolate. The Km and Vmax values for the folate and anti-folate substrates of PGH could not be determined, because the instrument reached its limit before the enzyme was saturated. Therefore, activity of PGH was compared to the activity of CPG, or normalized to PABA-GLU (nmole/min/µg). Relative to its activity with 10 µM PABA-GLU (100%), PGH cleaved glutamate from methotrexate (48%), aminopterin (45%) and folate (9%). Reduced folates leucovorin (5-formyltetrahydrofolate) and 5-methyltetrahydrofolate were not cleaved by PGH. Our data suggest that E. coli PGH is specific for PABA-GLU as its activity with natural folates (folate, 5-methyltetrahydrofolate, and leucovorin) was very poor. It does, however, have some ability to cleave anti-folates which may have clinical applications in treatment of chemotherapy overdose.
RESUMEN
OBJECTIVE: To determine the impact of performing critical-thinking and reflection assignments within interdisciplinary learning teams in a biochemistry course on pharmacy students' and prospective health professions students' collaboration scores. DESIGN: Pharmacy students and prospective medical, dental, and other health professions students enrolled in a sequence of 2 required biochemistry courses. They were randomly assigned to interdisciplinary learning teams in which they were required to complete case assignments, thinking and reflection exercises, and a team service-learning project. ASSESSMENT: Students were asked to complete the Scale of Attitudes Toward Physician-Pharmacist Collaboration prior to the first course, following the first course, and following the second course. The physician-pharmacist collaboration scores of prospective health professions students increased significantly (p<0.001). CONCLUSIONS: Having prospective health professions students work in teams with pharmacy students to think and reflect in and outside the classroom improves their attitudes toward physician-pharmacist collaboration.
Asunto(s)
Actitud del Personal de Salud , Bioquímica , Relaciones Interprofesionales , Farmacéuticos , Médicos , Estudiantes de Farmacia/psicología , Pensamiento , Conducta Cooperativa , HumanosRESUMEN
In January 2012, glucarpidase (Voraxaze(®)) received approval from the US Food and Drug Administration for intravenous treatment of toxic plasma methotrexate concentrations due to impaired renal clearance. Methotrexate, an antifolate agent, has been used for over 60 years in the treatment of various cancers. High-dose methotrexate has been particularly useful in the treatment of leukemias and lymphomas. However, even with aggressive hydration and urine alkalinization, such regimens can lead to acute renal dysfunction, as indicated by decreases in urine production and concomitant increases in blood urea nitrogen and serum creatinine levels. Because methotrexate is largely excreted by the kidneys, this can greatly potentiate tissue damage. Toxic levels of blood methotrexate can be rapidly and effectively decreased by intravenous administration of glucarpidase. Glucarpidase is a recombinant form of carboxypeptidase G2, a bacterial enzyme that rapidly cleaves methotrexate to form the amino acid glutamate and 2,4-diamino-N(10)-methylpteroic acid. Catabolites of methotrexate are much less toxic than the parent compound, and are primarily excreted by hepatic mechanisms. Glucarpidase has been available on a compassionate basis since the 1990s, and a variety of case reports and larger clinical trials have demonstrated the safety and efficacy of this drug in patients ranging in age from infants to the elderly and in a variety of races and ethnic groups. Glucarpidase should not be administered within 2 hours of leucovorin, because this agent is a reduced folate which competes with methotrexate for the enzyme and glucarpidase inactivates leucovorin. Side effects of glucarpidase are rare and relatively mild, and include paraesthesia, flushing, nausea, vomiting, pruritus, and headache. Glucarpidase has seen limited use in intrathecal treatment of methotrexate toxicity for which it is also effective. Future applications of this enzyme in chemotherapy continue to be an active area of research.
RESUMEN
OBJECTIVE: To measure changes in pharmacy and medical students' physician-pharmacist collaboration scores resulting from a workshop designed to promote understanding of the others' roles in health care. METHODS: More than 88% of first-year pharmacy (n = 215) and medical (n = 205) students completed the Scale of Attitudes Toward Physician-Pharmacist Collaboration on 3 occasions in order to establish a baseline of median scores and to determine whether the scores were influenced by an interprofessional workshop. RESULTS: Participation in the interprofessional workshop increased pharmacy students' collaboration scores above baseline (p=0.02) and raised the scores of medical students on the education component of the collaboration survey instrument (p=0.015). The collaboration scores of pharmacy students greatly exceeded those of medical students (p<0.0001). CONCLUSION: A workshop designed to foster interprofessional understanding between pharmacy and medical students raised the physician-pharmacist collaboration scores of both. Crucial practical goals for the future include raising the collaboration scores of medical students to those of pharmacy students.
Asunto(s)
Educación Médica/métodos , Educación en Farmacia/métodos , Estudiantes de Medicina/psicología , Estudiantes de Farmacia/psicología , Conducta Cooperativa , Recolección de Datos , Humanos , Relaciones Interprofesionales , Rol ProfesionalRESUMEN
Many microorganisms and plants possess the ability to synthesize folic acid derivatives de novo, initially forming dihydrofolate. All the folic acid derivatives that serve as recipients and donors of one-carbon units are derivatives of tetrahydrofolate, which is formed from dihydrofolate by an NADPH-dependent reduction catalyzed by dihydrofolate reductase (FolA). This review discusses the biosynthesis of dihydrofolate monoglutamate, its reduction to tetrahydrofolate monoglutamate, and the addition of glutamyl residues to form folylpolyglutamates. Escherichia coli and Salmonella, like many microorganisms that can synthesize folate de novo, appear to lack the ability to transport folate into the cell and are thus highly susceptible to inhibitors of folate biosynthesis. The review includes a brief discussion of the inhibition of folate biosynthesis by sulfa drugs. The folate biosynthetic pathway can be divided into two sections. First, the aromatic precursor chorismate is converted to paminobenzoic acid (PABA) by the action of three proteins. Second, the pteridine portion of folate is made from GTP and coupled to PABA to generate dihydropteroate, and the bifunctional protein specified by folC, dihydrofolate synthetase, or folylpolyglutamate synthetase, adds the initial glutamate molecule to form dihydrofolate (H2PteGlu1, or dihydropteroylmonoglutamate). Bacteriophage T4 infection of E. coli has been shown to cause alterations in the metabolism of folate derivatives. Infection is associated with an increase in the chain lengths in folylpolyglutamates and particularly the accumulation of hexaglutamate derivatives.
RESUMEN
Escherichia coli AbgT was first identified as a structural protein enabling the growth of p-aminobenzoate auxotrophs on exogenous p-aminobenzoyl-glutamate (M. J. Hussein, J. M. Green, and B. P. Nichols, J. Bacteriol. 180:6260-6268, 1998). The abg region includes abgA, abgB, abgT, and ogt; these genes may be regulated by AbgR, a divergently transcribed LysR-type protein. Wild-type cells transformed with a high-copy-number plasmid encoding abgT demonstrate saturable uptake of p-aminobenzoyl-glutamate (K(T)=123 microM); control cells expressing vector demonstrate negligible uptake. The addition of metabolic poisons inhibited uptake of p-aminobenzoyl-glutamate, consistent with this process requiring energy. p-Aminobenzoyl-glutamate taken in by cells expressing large amounts of AbgT alone is not rapidly metabolized to a form that is trapped in the cell, as the addition of nonradioactive p-aminobenzoyl-glutamate to these cells results in a rapid loss of intracellular label. The addition of nonradioactive p-aminobenzoate has no effect. The abgA, abgB, and abgAB genes were cloned into the medium-copy-number plasmid pACYC184; p-aminobenzoate auxotrophs transformed with the clone encoding abgAB demonstrated enhanced ability to grow on low levels of p-aminobenzoyl-glutamate. When transformed with complementary plasmids encoding high-copy levels of abgT and medium-copy levels of abgAB, p-aminobenzoate auxotrophs grew on 50 nM p-aminobenzoyl-glutamate. Our data are consistent with a model of p-aminobenzoyl-glutamate utilization in which AbgT catalyzes transport of p-aminobenzoyl-glutamate, followed by cleavage to p-aminobenzoate by a protein composed of subunits encoded by abgA and abgB. While endogenous expression of these genes is very low under the conditions in which we performed our experiments, these genes may be induced by AbgR bound to an unknown molecule. The true physiological role of this region may be related to some molecule similar to p-aminobenzoyl-glutamate, such as a dipeptide.