Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microb Ecol ; 85(4): 1608-1619, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35562600

RESUMEN

Most studies of wildlife gut microbiotas understandably rely on feces to approximate consortia along the gastrointestinal tract. We therefore compared microbiome structure and predicted metagenomic function in stomach, small intestinal, cecal, and colonic samples from 52 lemurs harvested during routine necropsies. The lemurs represent seven genera (Cheirogaleus, Daubentonia, Varecia, Hapalemur, Eulemur, Lemur, Propithecus) characterized by diverse feeding ecologies and gut morphologies. In particular, the hosts variably depend on fibrous foodstuffs and show correlative morphological complexity in their large intestines. Across host lineages, microbiome diversity, variability, membership, and function differed between the upper and lower gut, reflecting regional tradeoffs in available nutrients. These patterns related minimally to total gut length but were modulated by fermentation capacity (i.e., the ratio of small to large intestinal length). Irrespective of feeding strategy, host genera with limited fermentation capacity harbored more homogenized microbiome diversity along the gut, whereas those with expanded fermentation capacity harbored cecal and colonic microbiomes with greater diversity and abundant fermentative Ruminococcaceae taxa. While highlighting the value of curated sample repositories for retrospective comparisons, our results confirm that the need to survive on fibrous foods, either routinely or in hypervariable environments, can shape the morphological and microbial features of the lower gut.


Asunto(s)
Lemur , Lemuridae , Microbiota , Strepsirhini , Animales , Estudios Retrospectivos
2.
Zoo Biol ; 42(2): 209-222, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36251585

RESUMEN

Captive wildlife benefit from ecologically informed management strategies that promote natural behaviors. The Duke Lemur Center has pioneered husbandry programs rooted in species' ecology for a diversity of lemurs, including housing social groups in multiacre forest enclosures. We systematically document the foraging and ranging patterns of Coquerel's sifakas (Propithecus coquereli) living in these forest enclosures. Coquerel's sifakas are seasonal frugo-folivores that exhibit striking feeding flexibility in the wild. They are also one of the few members of the Indriidae family to persist in captivity. During all-day follows in the spring and summer of 2 consecutive years, we tracked the behavior of 14 sifakas in six forest enclosures. The sifakas' ranging and foraging patterns reflected those of wild sifakas in western Madagascar: On average, DLC sifakas occupied 3-day home ranges of 1.2 ha, traveled 473 m/day, and spent 26% of their time foraging for wild foodstuffs. The sifakas foraged most for young and mature leaves, fruits, nuts, and flowers from 39 plant species, especially red maple (Acer rubrum), tulip poplar (Liriodendron tulipifera), black locust (Robinia pseudoacacia), grapevine (Vitis rotundifolia), hickory (Carya spp.), and white oak (Quercus alba). Foraging patterns varied across seasons, enclosure areas, and groups, potentially reflecting differences in phenology, microhabitats, and individual preferences. While demonstrating that captive-bred primates express wild-like behaviors under ecologically relevant conditions, our results underscore the feeding flexibility of the Coquerel's sifaka. Captive wildlife exhibiting the range of species-specific behaviors are key resources for ecological research and might be best suited for future reintroductions.


Asunto(s)
Indriidae , Lemur , Strepsirhini , Animales , Animales de Zoológico , Fitomejoramiento , Primates , Bosques , Madagascar
3.
Folia Primatol (Basel) ; 92(5-6): 284-295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34702792

RESUMEN

Madagascar's biodiversity is imperiled by habitat loss and degradation. Furthermore, species may be locally extirpated due to targeted hunting or disease. Translocating at-risk individuals to areas devoid of the species may be an effective conservation intervention. The aye-aye, Daubentonia madagascariensis, is uniquely susceptible to hunting pressure due to a cultural superstition. In June 2018, we reintroduced two aye-ayes in the Anjajavy Reserve, a dry deciduous forest in northwestern Madagascar. The translocated individuals, an adult female and juvenile offspring, were rescued from a neighboring forest that was subjected to pressure from fires and logging. We safely secured and transported the aye-ayes to Anjajavy and put them in a quarantine enclosure, where they were subjected to biomedical and behavioral monitoring. After release in the adjacent, protected forest, we conducted postrelease monitoring of the adult female using radio-tracking and scan sampling to determine ranging and activity patterns. We conducted behavioral observations from October 2018 to February 2019 and collected sleeping site data from October 2018 to September 2019. The female aye-aye fed on local resources including Canariumsp. seeds. During the study period, the aye-aye used 31 nests, occupied a home range of approximately 85 ha and traveled, on average, at a pace of 320 m/h. Our findings are comparable with published data on wild aye-ayes in other regions of Madagascar and provide support for future reintroductions of adult aye-ayes, and potentially other endemic species to the natural and protected habitats of Anjajavy.


Asunto(s)
Conservación de los Recursos Naturales , Strepsirhini , Animales , Ecosistema , Femenino , Fenómenos de Retorno al Lugar Habitual , Caza , Madagascar
4.
Folia Primatol (Basel) ; 91(6): 697-710, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32731251

RESUMEN

The nocturnal mouse and dwarf lemurs from Madagascar are known to express heterothermy. Whereas dwarf lemurs (Cheirogaleus) are obligate hibernators, mouse lemurs (Microcebus) can express a great range of heterothermic responses, including daily torpor, prolonged torpor or hibernation, depending on the species, population or individual. Although there is indirect evidence of heterothermy in a handful of mouse lemur species, direct physiological confirmation is currently limited to four: Microcebus berthae(dry forest), M. ravelobensis(dry forest), M. griseorufus(spiny forest), M. murinus(dry forest/littoral forest). We studied Goodman's mouse lemurs (M. lehilahytsara) at the high-altitude rain forest of Tsinjoarivo, central-eastern Madagascar. We captured a total of 45 mouse lemurs during pre- and post-torpor seasons. We recorded body mass and measured tail base circumference, which was used as proxy for fattening. Moreover, using telemetry, we obtained sporadic skin temperature data from a mouse lemur female between March and June. From June 9 to 16, we performed more intensive data sampling and thereby confirmed the expression of prolonged torpor in this female, when skin temperatures consistently displayed values below 25°C for more than 24 h. We documented 3 torpor bouts, 2 of which were interrupted by naturally occurring arousals. Torpor bout duration ranged from approximately 47 to maximally about 69 h. We found similarities between the Goodman's mouse lemur torpor profile and those known from other species, including the fact that only a portion of any mouse lemur population deposits fat stores and undergoes torpor in a given year. The variable expression of heterothermy in Goodman's mouse lemurs contrasts with obligatory hibernation displayed by two sympatric species of dwarf lemurs, suggesting cheirogaleids use a range of metabolic strategies to cope with seasonality and cold environments.


Asunto(s)
Cheirogaleidae/fisiología , Letargo/fisiología , Tejido Adiposo/fisiología , Altitud , Animales , Peso Corporal , Femenino , Madagascar , Masculino
5.
Zoo Biol ; 39(5): 334-344, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32608534

RESUMEN

For captive primates, greater provisioning of leafy greens or foliage can promote natural foraging behavior while boosting fiber intake. Recalcitrant fiber, although minimally available to endogenous metabolism, is readily fermented into nutrients by gut microbes. Whereas most primates in captivity consume fiber-limited diets and harbor imbalanced gut microbiota compared to their wild conspecifics, the importance of fiber provisioning to primate gut microbiota has predominately been studied in folivores. We, therefore, determined if commercial lettuce could be used to encourage foraging behavior and modify the gut microbiota of captive frugivores. We provisioned ruffed lemurs (Varecia rubra and V. variegata) with romaine lettuce, on top of the standard dietary fare, for 10 consecutive days. Before and across the period of lettuce supplementation, we collected observational data of animal feeding and fecal samples for microbiome analysis, determined via amplicon sequencing. The ruffed lemurs and their gut microbes responded to lettuce provisioning. In particular, younger animals readily ate lettuce and showed no decline in consumption across study days. When controlling for the effects of host species and social-group membership, lettuce consumption shifted the composition of the gut microbiome away from each lemur's own baseline, an effect that became stronger as the study progressed. In the final study days, Ruminococcaceae UCG-008 and Akkermansia, microbes typically and respectively associated with fiber metabolism and host health, were significantly enriched in the consortia of lettuce-provisioned subjects. Ultimately, the routine offering of lettuce, leafy greens, or foliage to captive frugivores may benefit animal wellbeing.


Asunto(s)
Alimentación Animal , Dieta/veterinaria , Conducta Alimentaria , Microbioma Gastrointestinal , Lactuca , Lemuridae/fisiología , Bienestar del Animal , Animales , Animales de Zoológico , Frutas
6.
Biol Lett ; 15(6): 20190028, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31185820

RESUMEN

Both host phylogenetic placement and feeding strategy influence the structure of the gut microbiome (GMB); however, parsing their relative contributions presents a challenge. To meet this challenge, we compared GMB structure in two genera of lemurs characterized by different dietary specializations, the frugivorous brown lemurs ( Eulemur spp.) and the folivorous sifakas ( Propithecus spp.). These genera sympatrically occupy similar habitats (dry forests and rainforests) and diverged over similar evolutionary timescales. We collected fresh faeces from 12 species (six per host genus), at seven sites across Madagascar, and sequenced the 16S rRNA gene to determine GMB membership, diversity and variability. The lemurs' GMBs clustered predominantly by host genus; nevertheless, within genera, host relatedness did not predict GMB distance between species. The GMBs of brown lemurs had greater evenness and diversity, but were more homogeneous across species, whereas the GMBs of sifakas were differentiated between habitats. Thus, over relatively shallow timescales, environmental factors can override the influence of host phylogenetic placement on GMB phylogenetic composition. Moreover, feeding strategy can underlie the relative strength of host-microbiome coadaptation, with Madagascar's folivores perhaps requiring locally adapted GMBs to facilitate their highly specialized diets.


Asunto(s)
Microbioma Gastrointestinal , Lemur , Lemuridae , Animales , Madagascar , Filogenia , ARN Ribosómico 16S
7.
Am J Primatol ; 81(10-11): e22974, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30932230

RESUMEN

Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host-microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage-specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent-gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host-microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis-driven research.


Asunto(s)
Conducta Alimentaria , Lemuridae/microbiología , Microbiota , Glándulas Odoríferas/microbiología , Crianza de Animales Domésticos , Animales , Dieta/veterinaria , Femenino , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Madagascar , Masculino , Filogenia
8.
Am J Primatol ; 81(10-11): e22986, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31081142

RESUMEN

Feeding strategy and diet are increasingly recognized for their roles in governing primate gut microbiome (GMB) composition. Whereas feeding strategy reflects evolutionary adaptations to a host's environment, diet is a more proximate measure of food intake. Host phylogeny, which is intertwined with feeding strategy, is an additional, and often confounding factor that shapes GMBs across host lineages. Nocturnal strepsirrhines are an intriguing and underutilized group in which to examine the links between these three factors and GMB composition. Here, we compare GMB composition in four species of captive, nocturnal strepsirrhines with varying feeding strategies and phylogenetic relationships, but nearly identical diets. We use 16S rRNA sequences to determine gut bacterial composition. Despite similar husbandry conditions, including diet, we find that GMB composition varies significantly across host species and is linked to host feeding strategy and phylogeny. The GMBs of the omnivorous and the frugivorous species were significantly more diverse than were those of the insectivorous and exudativorous species. Across all hosts, GMBs were enriched for bacterial taxa associated with the macronutrient resources linked to the host's respective feeding strategy. Ultimately, the reported variation in microbiome composition suggests that the impacts of captivity and concurrent diet do not overshadow patterns of feeding strategy and phylogeny. As our understanding of primate GMBs progresses, populations of captive primates can provide insight into the evolution of host-microbe relationships, as well as inform future captive management protocols that enhance primate health and conservation.


Asunto(s)
Dieta/veterinaria , Microbioma Gastrointestinal , Strepsirhini/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Conducta Alimentaria , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Strepsirhini/fisiología
9.
Am J Phys Anthropol ; 166(4): 960-967, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29665003

RESUMEN

OBJECTIVES: The aye-aye (Daubentonia madagascariensis) is famous for its feeding strategies that target structurally defended, but high-quality resources. Nonetheless, the influence of this digestible diet on gut microbial contributions to aye-aye metabolism and nutrition remains unexplored. When four captive aye-ayes were unexpectedly lost to persin toxicity, we opportunistically collected samples along the animals' gastrointestinal tracts. Here we describe the diversity and composition of appendicular, cecal, and colonic consortia relative to the aye-aye's unusual feeding ecology. MATERIALS AND METHODS: During necropsies, we collected digestive content from the appendix, cecum, and distal colon. We determined microbiome structure at these sites via amplicon sequencing of the 16S rRNA gene and an established bioinformatics pipeline. RESULTS: The aye-ayes' microbiomes exhibited low richness and diversity compared to the consortia of other lemurs housed at the same facility, and were dominated by a single genus, Prevotella. Appendicular microbiomes were differentiated from more homogenized cecal and colonic consortia by lower richness and diversity, greater evenness, and a distinct taxonomic composition. DISCUSSION: The simplicity of the aye-aye's gut microbiome could be attributed to captivity-induced dysbiosis, or it may reflect this species' extreme foraging investment in a digestible diet that requires little microbial metabolism. Site-specific appendicular consortia, but more similar cecal and colonic consortia, support the theory that the appendix functions as a safe-house for beneficial bacteria, and confirm fecal communities as fairly reliable proxies for consortia along the lower gut. We encourage others to make similar use of natural or accidental losses for probing the primate gut microbiome.


Asunto(s)
Apéndice/microbiología , Bacterias/genética , Colon/microbiología , Microbioma Gastrointestinal/fisiología , Strepsirhini , Animales , Animales de Zoológico , Bacterias/clasificación , ADN Bacteriano/análisis , ADN Bacteriano/genética , Alcoholes Grasos/envenenamiento , Femenino , Masculino , Strepsirhini/microbiología , Strepsirhini/fisiología
10.
Microb Ecol Health Dis ; 28(1): 1335165, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740461

RESUMEN

Background: The gut microbiome (GMB) is the first line of defense against enteric pathogens, which are a leading cause of disease and mortality worldwide. One such pathogen, the protozoan Cryptosporidium, causes a variety of digestive disorders that can be devastating and even lethal. The Coquerel's sifaka (Propithecus coquereli) - an endangered, folivorous primate endemic to Madagascar - is precariously susceptible to cryptosporidiosis under captive conditions. If left untreated, infection can rapidly advance to morbidity and death. Objective: To gain a richer understanding of the pathophysiology of this pathogen while also improving captive management of endangered species, we examine the impact of cryptosporidiosis on the GMB of a flagship species known to experience a debilitating disease state upon infection. Design: Using 16S sequencing of DNA extracted from sifaka fecal samples, we compared the microbial communities of healthy sifakas to those of infected individuals, across infection and recovery periods. Results: Over the course of infection, we found that the sifaka GMB responds with decreased microbial diversity and increased community dissimilarity. Compared to the GMB of unaffected individuals, as well as during pre-infection and recovery periods, the GMB during active infection was enriched for microbial taxa associated with dysbiosis and rapid transit time. Time to recovery was inversely related to age, with young animals being slowest to recover GMB diversity and full community membership. Antimicrobial treatment during infection caused a significant depletion in GMB diversity. Conclusions: Although individual sifakas show unique trajectories of microbial loss and recolonization in response to infection, recovering sifakas exhibit remarkably consistent patterns, similar to initial community assembly of the GMB in infants. This observation, in particular, provides biological insight into the rules by which the GMB recovers from the disease state. Fecal transfaunation may prove effective in restoring a healthy GMB in animals with specialized diets.

11.
Horm Behav ; 78: 95-106, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26545817

RESUMEN

In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a 'dominant' role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems.


Asunto(s)
Agresión/fisiología , Antagonistas de Receptores Androgénicos/farmacología , Conducta Animal/fisiología , Flutamida/farmacología , Herpestidae/fisiología , Conducta Social , Testosterona/fisiología , Agresión/efectos de los fármacos , Antagonistas de Receptores Androgénicos/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Dominación-Subordinación , Femenino , Flutamida/administración & dosificación , Masculino
12.
Biol Lett ; 12(10)2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28120802

RESUMEN

The immunocompetence handicap hypothesis posits that androgens in males can be a 'double-edged sword', actively promoting reproductive success, while also negatively impacting health. Because there can be both substantial androgen concentrations in females and significant androgenic variation among them, particularly in species portraying female social dominance over males or intense female-female competition, androgens might also play a role in mediating female health and fitness. We examined this hypothesis in the meerkat (Suricata suricatta), a cooperatively breeding, social carnivoran characterized by aggressively mediated female social dominance and extreme rank-related reproductive skew. Dominant females also have greater androgen concentrations and harbour greater parasite loads than their subordinate counterparts, but the relationship between concurrent androgen concentrations and parasite burdens is unknown. We found that a female's faecal androgen concentrations reliably predicted her concurrent state of endoparasitism irrespective of her social status: parasite species richness and infection by Spirurida nematodes, Oxynema suricattae, Pseudandrya suricattae and coccidia were greater with greater androgen concentrations. Based on gastrointestinal parasite burdens, females appear to experience the same trade-off in the costs and benefits of raised androgens as do the males of many species. This trade-off presumably represents a health cost of sexual selection operating in females.


Asunto(s)
Andrógenos/metabolismo , Heces/química , Herpestidae/fisiología , Herpestidae/parasitología , Animales , Cestodos/aislamiento & purificación , Coccidios/aislamiento & purificación , Heces/parasitología , Femenino , Nematodos/aislamiento & purificación , Predominio Social
13.
Naturwissenschaften ; 103(5-6): 37, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27056047

RESUMEN

Members of the order Carnivora rely on urinary scent signaling, particularly for communicating about reproductive parameters. Here, we describe reproductive endocrine patterns in relation to urinary olfactory cues in a vulnerable and relatively unknown viverrid--the binturong (Arctictis binturong). Female binturongs are larger than and dominate males, and both sexes engage in glandular and urinary scent marking. Using a large (n = 33), captive population, we collected serum samples to measure circulating sex steroids via enzyme immunoassay and urine samples to assay volatile chemicals via gas chromatography-mass spectrometry. Male binturongs had expectedly greater androgen concentrations than did females but, more unusually, had equal estrogen concentrations, which may be linked to male deference. Males also expressed a significantly richer array of volatile chemical compounds than did females. A subset of these volatile chemicals resisted decay at ambient temperatures, potentially indicating their importance as long-lasting semiochemicals. Among these compounds was 2-acetyl-1-pyrroline (2-AP), which is typically produced at high temperatures by the Maillard reaction and is likely to be responsible for the binturong's characteristic popcorn aroma. 2-AP, the only compound expressed by all of the subjects, was found in greater abundance in males than females and was significantly and positively related to circulating androstenedione concentrations in both sexes. This unusual compound may have a more significant role in mammalian semiochemistry than previously appreciated. Based on these novel data, we suggest that hormonal action and potentially complex chemical reactions mediate communication of the binturong's signature scent and convey information about sex and reproductive state.


Asunto(s)
Odorantes/análisis , Feromonas/fisiología , Pirroles/orina , Reproducción/fisiología , Viverridae/fisiología , Androstenodiona/orina , Comunicación Animal , Animales , Dieta , Femenino , Hormonas Esteroides Gonadales/sangre , Masculino , Feromonas/química , Temperatura , Viverridae/sangre , Viverridae/orina , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/orina
14.
Ann N Y Acad Sci ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137248

RESUMEN

The dwarf lemurs (Cheirogaleus spp.) of Madagascar are the only obligate hibernators among primates. Despite century-old field accounts of seasonal lethargy, and more recent evidence of hibernation in the western fat-tailed dwarf lemur (Cheirogaleus medius), inducing hibernation in captivity remained elusive for decades. This included the Duke Lemur Center (DLC), which maintains fat-tailed dwarf lemurs and has produced sporadic research on reproduction and metabolism. With cumulative knowledge from the field, a newly robust colony, and better infrastructure, we recently induced hibernation in DLC dwarf lemurs. We describe two follow-up experiments in subsequent years. First, we show that dwarf lemurs under stable cold conditions (13°C) with available food continued to eat daily, expressed shallower and shorter torpor bouts, and had a modified gut microbiome compared to peers without food. Second, we demonstrate that dwarf lemurs under fluctuating temperatures (12-30°C) can passively rewarm daily, which was associated with altered patterns of fat depletion and reduced oxidative stress. Despite the limitations of working with endangered primates, we highlight the promise of studying hibernation in captive dwarf lemurs. Follow-up studies on genomics and epigenetics, metabolism, and endocrinology could have relevance across multidisciplinary fields, from biomedicine to evolutionary biology, and conservation.

15.
Primates ; 65(5): 391-396, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126444

RESUMEN

Fat-tailed dwarf lemurs (Cheirogaleus medius), primates endemic to Madagascar, are obligate hibernators that form stable, lifelong pairs in the wild. Given the temporal constraints imposed by seasonal hibernation, infant dwarf lemurs must grow, develop, and wean within the first two months of life. Maternal as well as paternal infant care, observed in the wild, has been deemed critical for infant survival. Given the importance of fathers' involvement in early infant care, we expect this behavior to persist even under captive conditions. At the Duke Lemur Center, in Durham NC, we observed two families of fat-tailed dwarf lemurs and focused on the behavior of adult males within the first two months of the infants' lives. We report evidence of paternal involvement, including babysitting, co-feeding, grooming, accompanying, and leading infants, consistent with observations from the wild. As expected, paternal babysitting decreased as infants gained independence, while co-feeding increased. Supplemental anecdotes, video recorded by observers, also highlight clear cases of involvement by both parents, and even older siblings, in safeguarding and socializing new infants. We argue that maintaining captive fat-tailed dwarf lemur populations under socially and ecologically relevant conditions facilitates the full expression of physiological and behavioral repertoires. Most importantly, it also allows dwarf lemurs to realize their species' potential and become robust proxies of their wild kin.


Asunto(s)
Cheirogaleidae , Conducta Paterna , Animales , Masculino , Cheirogaleidae/fisiología , Femenino , Conducta Social , North Carolina , Animales de Zoológico/fisiología
16.
Am J Primatol ; 75(7): 621-42, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23526595

RESUMEN

Olfactory communication in primates is gaining recognition; however, studies on the production and perception of primate scent signals are still scant. In general, there are five tasks to be accomplished when deciphering the chemical signals contained in excretions and secretions: (1) obtaining the appropriate samples; (2) extracting the target organic compounds from the biological matrix; (3) separating the extracted compounds from one another (by gas chromatography, GC or liquid chromatography, LC); (4) identifying the compounds (by mass spectrometry, MS and associated procedures); and (5) revealing biologically meaningful patterns in the data. Ultimately, because some of the compounds identified in odorants may not be relevant, associated steps in understanding signal function involve verifying the perception or biological activity of putative semiochemicals via (6) behavioral bioassays or (7) receptor response studies. This review will focus on the chemical analyses and behavioral bioassays of volatile, primate scent signals. Throughout, we highlight the potential pitfalls of working with highly complex, chemical matrices and suggest ways for minimizing problems. A recurring theme in this review is that multiple approaches and instrumentation are required to characterize the full range of information contained in the complex mixtures that typify primate or, indeed, many vertebrate olfactory cues. Only by integrating studies of signal production with those verifying signal perception will we better understand the function of olfactory communication.


Asunto(s)
Comunicación Animal , Primates/fisiología , Olfato , Animales
17.
Front Physiol ; 14: 1251042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745231

RESUMEN

Feast-fast cycles allow animals to live in seasonal environments by promoting fat storage when food is plentiful and lipolysis when food is scarce. Fat-storing hibernators have mastered this cycle over a circannual schedule, by undergoing extreme fattening to stockpile fuel for the ensuing hibernation season. Insulin is intrinsic to carbohydrate and lipid metabolism and is central to regulating feast-fast cycles in mammalian hibernators. Here, we examine glucose and insulin dynamics across the feast-fast cycle in fat-tailed dwarf lemurs, the only obligate hibernator among primates. Unlike cold-adapted hibernators, dwarf lemurs inhabit tropical forests in Madagascar and hibernate under various temperature conditions. Using the captive colony at the Duke Lemur Center, we determined fasting glucose and insulin, and glucose tolerance, in dwarf lemurs across seasons. During the lean season, we maintained dwarf lemurs under stable warm, stable cold, or fluctuating ambient temperatures that variably included food provisioning or deprivation. Overall, we find that dwarf lemurs can show signatures of reversible, lean-season insulin resistance. During the fattening season prior to hibernation, dwarf lemurs had low glucose, insulin, and HOMA-IR despite consuming high-sugar diets. In the active season after hibernation, glucose, insulin, HOMA-IR, and glucose tolerance all increased, highlighting the metabolic processes at play during periods of weight gain versus weight loss. During the lean season, glucose remained low, but insulin and HOMA-IR increased, particularly in animals kept under warm conditions with daily food. Moreover, these lemurs had the greatest glucose intolerance in our study and had average HOMA-IR values consistent with insulin resistance (5.49), while those without food under cold (1.95) or fluctuating (1.17) temperatures did not. Remarkably low insulin in dwarf lemurs under fluctuating temperatures raises new questions about lipid metabolism when animals can passively warm and cool rather than undergo sporadic arousals. Our results underscore that seasonal changes in insulin and glucose tolerance are likely hallmarks of hibernating mammals. Because dwarf lemurs can hibernate under a range of conditions in captivity, they are an emerging model for primate metabolic flexibility with implications for human health.

18.
FEMS Microbiol Ecol ; 98(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35679092

RESUMEN

The gut microbiome can mediate host metabolism, including facilitating energy-saving strategies like hibernation. The dwarf lemurs of Madagascar (Cheirogaleus spp.) are the only obligate hibernators among primates. They also hibernate in the subtropics, and unlike temperate hibernators, fatten by converting fruit sugars to lipid deposits, torpor at relatively warm temperatures, and forage for a generalized diet after emergence. Despite these ecological differences, we might expect hibernation to shape the gut microbiome in similar ways across mammals. We, therefore, compare gut microbiome profiles, determined by amplicon sequencing of rectal swabs, in wild furry-eared dwarf lemurs (C. crossleyi) during fattening, hibernation, and after emergence. The dwarf lemurs exhibited reduced gut microbial diversity during fattening, intermediate diversity and increased community homogenization during hibernation, and greatest diversity after emergence. The Mycoplasma genus was enriched during fattening, whereas the Aerococcaceae and Actinomycetaceae families, and not Akkermansia, bloomed during hibernation. As expected, the dwarf lemurs showed seasonal reconfigurations of the gut microbiome; however, the patterns of microbial diversity diverged from temperate hibernators, and better resembled the shifts associated with dietary fruits and sugars in primates and model organisms. Our results thus highlight the potential for dwarf lemurs to probe microbiome-mediated metabolism in primates under contrasting conditions.


Asunto(s)
Cheirogaleidae , Microbioma Gastrointestinal , Hibernación , Letargo , Animales , Microbioma Gastrointestinal/genética , Mamíferos , Azúcares
19.
Physiol Biochem Zool ; 95(2): 122-129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986077

RESUMEN

AbstractHibernation, a metabolic strategy, allows individuals to reduce energetic demands in times of energetic deficits. Hibernation is pervasive in nature, occurring in all major mammalian lineages and geographical regions; however, its expression is variable across species, populations, and individuals, suggesting that trade-offs are at play. Whereas hibernation reduces energy expenditure, energetically expensive arousals may impose physiological burdens. The torpor optimization hypothesis posits that hibernation should be expressed according to energy availability. The greater the energy surplus, the lower the hibernation output. The thrifty female hypothesis, a variation of the torpor optimization hypothesis, states that females should conserve more energy because of their more substantial reproductive costs. Contrarily, if hibernation's benefits offset its costs, hibernation may be maximized rather than optimized (e.g., hibernators with greater fat reserves could afford to hibernate longer). We assessed torpor expression in captive dwarf lemurs, primates that are obligate, seasonal, and tropical hibernators. Across 4.5 mo in winter, we subjected eight individuals at the Duke Lemur Center to conditions conducive to hibernation, recorded estimates of skin temperature hourly (a proxy for torpor), and determined body mass and tail fat reserves bimonthly. Across and between consecutive weigh-ins, heavier dwarf lemurs spent less time in torpor and lost more body mass. At equivalent body mass, females spent more time torpid and better conserved energy than did males. Although preliminary, our results support the torpor optimization and thrifty female hypotheses, suggesting that individuals optimize rather than maximize torpor according to body mass. These patterns are consistent with hibernation phenology in Madagascar, where dwarf lemurs hibernate longer in more seasonal habitats.


Asunto(s)
Cheirogaleidae , Hibernación , Letargo , Animales , Temperatura Corporal , Metabolismo Energético , Femenino , Masculino , Mamíferos , Estaciones del Año , Cola (estructura animal)
20.
Anim Microbiome ; 4(1): 29, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484581

RESUMEN

BACKGROUND: Inter-population variation in host-associated microbiota reflects differences in the hosts' environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes-an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia. RESULTS: The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal 'signal of captivity' that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota. CONCLUSIONS: As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple 'captive vs. wild' dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA