RESUMEN
Marseilleviruses (MsV) are a group of viruses that compose the Marseilleviridae family within the Nucleocytoviricota phylum. They have been found in different samples, mainly in freshwater. MsV are classically organized into five phylogenetic lineages (A/B/C/D/E), but the current taxonomy does not fully represent all the diversity of the MsV lineages. Here, we describe a novel strain isolated from a Brazilian saltwater sample named Marseillevirus cajuinensis. Based on genomics and phylogenetic analyses, M. cajuinensis exhibits a 380,653-bp genome that encodes 515 open reading frames. Additionally, M. cajuinensis encodes a transfer RNA, a feature that is rarely described for Marseilleviridae. Phylogeny suggests that M. cajuinensis forms a divergent branch within the MsV lineage A. Furthermore, our analysis suggests that the common ancestor for the five classical lineages of MsV diversified into three major groups. The organization of MsV into three main groups is reinforced by a comprehensive analysis of clusters of orthologous groups, sequence identities, and evolutionary distances considering several MsV isolates. Taken together, our results highlight the importance of discovering new viruses to expand the knowledge about known viruses that belong to the same lineages or families. This work proposes a new perspective on the Marseilleviridae lineages organization that could be helpful to a future update in the taxonomy of the Marseilleviridae family. IMPORTANCE: Marseilleviridae is a family of viruses whose members were mostly isolated from freshwater samples. In this work, we describe the first Marseillevirus isolated from saltwater samples, which we called Marseillevirus cajuinensis. Most of M. cajuinensis genomic features are comparable to other Marseilleviridae members, such as its high number of unknown proteins. On the other hand, M. cajuinensis encodes a transfer RNA, which is a gene category involved in protein translation that is rarely described in this viral family. Additionally, our phylogenetic analyses suggested the existence of, at least, three major Marseilleviridae groups. These observations provide a new perspective on Marseilleviridae lineages organization, which will be valuable in future updates to the taxonomy of the family since the current official classification does not capture all the Marseilleviridae known diversity.
Asunto(s)
Genoma Viral , Virus , Brasil , Evolución Molecular , Genómica/métodos , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , Virus/clasificación , Virus/genéticaRESUMEN
The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards. Uncontrolled degradation of peptidoglycan poses risks to the chlamydial cell, as essential building blocks might get lost or trigger host immune response upon release into the host cell. Here, we provide evidence that a primordial enzyme class prevents energy intensive de novo synthesis and uncontrolled release of immunogenic peptidoglycan subunits in Chlamydia trachomatis. Our data indicate that the homolog of a Bacillus NlpC/P60 protein is widely conserved among Chlamydiales. We show that the enzyme is tailored to hydrolyze peptidoglycan-derived peptides, does not interfere with peptidoglycan precursor biosynthesis, and is targeted by cysteine protease inhibitors in vitro and in cell culture. The peptidase plays a key role in the underexplored process of chlamydial peptidoglycan recycling. Our study suggests that chlamydiae orchestrate a closed-loop system of peptidoglycan ring biosynthesis, remodeling, and recycling to support cell division and maintain long-term residence inside the host. Operating at the intersection of energy recovery, cell division and immune evasion, the peptidoglycan recycling NlpC/P60 peptidase could be a promising target for the development of drugs that combine features of classical antibiotics and anti-virulence drugs.
Asunto(s)
Chlamydia trachomatis , Peptidoglicano , Chlamydia trachomatis/metabolismo , Peptidoglicano/metabolismo , Evasión Inmune , Proteínas Bacterianas/metabolismo , División Celular , Pared Celular/metabolismo , Péptido Hidrolasas/metabolismoRESUMEN
Chlamydia pneumoniae infection cases have usually accounted for <1.5% of community-acquired respiratory tract infections. Currently, Lausanne, Switzerland is experiencing a notable upsurge in cases, with 28 reported within a span of a few months. This upsurge in cases highlights the need for heightened awareness among clinicians.
Asunto(s)
Infecciones por Chlamydia , Chlamydophila pneumoniae , Infecciones Comunitarias Adquiridas , Infecciones del Sistema Respiratorio , Humanos , Suiza/epidemiología , Centros de Atención Terciaria , Infecciones del Sistema Respiratorio/epidemiología , Infecciones Comunitarias Adquiridas/epidemiologíaRESUMEN
In this study, we investigated the genomic changes in a major methicillin-resistant Staphylococcus aureus (MRSA) clone following a significant outbreak at a hospital. Whole-genome sequencing of MRSA isolates was utilized to explore the genomic evolution of post-outbreak MRSA strains. The epidemicity of the clone declined over time, coinciding with the introduction of multimodal infection control measures. A genome-wide association study (GWAS) identified multiple genes significantly associated with either high or low epidemic success, indicating alterations in mobilome, virulence, and defense mechanisms. Random Forest models pinpointed a gene related to fibrinogen binding as the most influential predictor of epidemicity. The decline of the MRSA clone may be attributed to various factors, including the implementation of new infection control measures, single nucleotide polymorphisms accumulation, and the genetic drift of a given clone. This research underscores the complex dynamics of MRSA clones, emphasizing the multifactorial nature of their evolution. The decline in epidemicity seems linked to alterations in the clone's genetic profile, with a probable shift towards decreased virulence and adaptation to long-term carriage. Understanding the genomic basis for the decline of epidemic clones is crucial to develop effective strategies for their surveillance and management, as well as to gain insights into the evolutionary dynamics of pathogen genomes.
Asunto(s)
Infección Hospitalaria , Brotes de Enfermedades , Evolución Molecular , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Secuenciación Completa del Genoma , Humanos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/clasificación , Genoma Bacteriano/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Epidemiología MolecularRESUMEN
In clinical bacteriology laboratories, reading and processing of sterile plates remain a significant part of the routine workload (30%-40% of the plates). Here, an algorithm was developed for bacterial growth detection starting with any type of specimens and using the most common media in bacteriology. The growth prediction performance of the algorithm for automatic processing of sterile plates was evaluated not only at 18-24 h and 48 h but also at earlier timepoints toward the development of an early growth monitoring system. A total of 3,844 plates inoculated with representative clinical specimens were used. The plates were imaged 15 times, and two different microbiologists read the images randomly and independently, creating 99,944 human ground truths. The algorithm was able, at 48 h, to discriminate growth from no growth with a sensitivity of 99.80% (five false-negative [FN] plates out of 3,844) and a specificity of 91.97%. At 24 h, sensitivity and specificity reached 99.08% and 93.37%, respectively. Interestingly, during human truth reading, growth was reported as early as 4 h, while at 6 h, half of the positive plates were already showing some growth. In this context, automated early growth monitoring in case of normally sterile samples is envisioned to provide added value to the microbiologists, enabling them to prioritize reading and to communicate early detection of bacterial growth to the clinicians.
Asunto(s)
Inteligencia Artificial , Bacterias , Sensibilidad y Especificidad , Humanos , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Algoritmos , Técnicas Bacteriológicas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología , Bacteriología , Automatización de Laboratorios/métodos , Medios de Cultivo/químicaRESUMEN
Bacterial toxin-antitoxin (TA) systems are widespread in chromosomes and plasmids of free-living microorganisms, but only a few have been identified in obligate intracellular species. We found seven putative type II TA modules in Waddlia chondrophila, a Chlamydia-related species that is able to infect a very broad series of eukaryotic hosts, ranging from protists to mammalian cells. The RNA levels of Waddlia TA systems are significantly upregulated by iron starvation and novobiocin, but they are not affected by antibiotics such as ß-lactams and glycopeptides, which suggests different mechanisms underlying stress responses. Five of the identified TA modules, including HigBA1 and MazEF1, encoded on the Waddlia cryptic plasmid, proved to be functional when expressed in a heterologous host. TA systems have been associated with the maintenance of mobile genetic elements, bacterial defense against bacteriophages, and persistence upon exposure to adverse conditions. As their RNA levels are upregulated upon exposure to adverse conditions, Waddlia TA modules may be involved in survival to stress. Moreover, as Waddlia can infect a wide range of hosts including free-living amoebae, TA modules could also represent an innate immunity system to fight against bacteriophages and other microorganisms with which Waddlia has to share its replicative niche.IMPORTANCEThe response to adverse conditions, such as exposure to antibiotics, nutrient starvation and competition with other microorganisms, is essential for the survival of a bacterial population. TA systems are modules composed of two elements, a toxic protein and an antitoxin (protein or RNA) that counteracts the toxin. Although many aspects of TA biological functions still await to be elucidated, TAs have often been implicated in bacterial response to stress, including the response to nutrient starvation, antibiotic treatment and bacteriophage infection. TAs are ubiquitous in free-living bacteria but rare in obligate intracellular species such as chlamydiae. We identified functional TA systems in Waddlia chondrophila, a chlamydial species with a strikingly broad host range compared to other chlamydiae. Our work contributes to understand how obligate intracellular bacteria react to adverse conditions that might arise from competition with other viruses/bacteria for the same replicative niche and would threaten their ability to replicate.
Asunto(s)
Antitoxinas , Chlamydia , Chlamydiales , Sistemas Toxina-Antitoxina , Toxinas Biológicas , Animales , Sistemas Toxina-Antitoxina/genética , Chlamydia/genética , Chlamydia/metabolismo , Toxinas Biológicas/metabolismo , Antitoxinas/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , ARN/metabolismo , MamíferosRESUMEN
The Rhabdochlamydiaceae family is a recent addition to the Chlamydiae phylum. Its members were discovered in cockroaches and woodlice, but recent metagenomics surveys demonstrated the widespread distribution of this family in the environment. It was, moreover, estimated to be the largest family of the Chlamydiae phylum based on the diversity of its 16S rRNA encoding gene. Unlike most Chlamydia-like organisms, no Rhabdochlamydiaceae member could be cultivated in amoebae, and its host range remains unknown. We tested the permissivity of various mammalian and arthropod cell lines to determine the host range of Rhabdochlamydia porcellionis, the only cultured representative of this family. While growth could initially be obtained only in the Sf9 cell line, lowering the incubation temperature of the mammalian cells from 37°C to 28°C allowed the growth of R. porcellionis. Furthermore, a 6-h exposure to 37°C was sufficient to irreversibly block the replication of R. porcellionis, suggesting that this bacterium either lost or never acquired the ability to grow at 37°C. We next sought to determine if temperature would also affect the infectivity of elementary bodies. Although we could not purify enough bacteria to reach a conclusive result for R. porcellionis, our experiment showed that the elementary bodies of Chlamydia trachomatis and Waddlia chondrophila lose their infectivity faster at 37°C than at room temperature. Our results demonstrate that members of the Chlamydiae phylum adapt to the temperature of their host organism and that this adaptation can in turn restrict their host range. IMPORTANCE The Rhabdochlamydiaceae family is part of the Chlamydiae, a phylum of bacteria that includes obligate intracellular bacteria sharing the same biphasic developmental cycle. This family has been shown to be highly prevalent in the environment, particularly in freshwater and soil, and despite being estimated to be the largest family in the Chlamydiae phylum is only poorly studied. Members of the Rhabdochlamydiaceae have been detected in various arthropods like ticks, spiders, cockroaches, and woodlice, but the full host range of this family is currently unknown. In this study, we showed that R. porcellionis, the only cultured representative of the Rhabdochlamydiaceae family, cannot grow at 37°C and is quickly inactivated at this temperature. A similar temperature sensitivity was also observed for elementary bodies of chlamydial species adapted to mammals. Our work demonstrates that chlamydiae adapt to the temperature of their reservoir, making a jump between species with different body temperatures unlikely.
Asunto(s)
Artrópodos , Especificidad del Huésped , Animales , ARN Ribosómico 16S/genética , Temperatura , Línea Celular , MamíferosRESUMEN
PURPOSE: Traditional epidemiological investigations of healthcare-associated Clostridioides difficile infection (HA-CDI) are often insufficient. This study aimed to evaluate a procedure that includes secondary isolation and genomic typing of single toxigenic colonies using core genome multilocus sequence typing (cgMLST) for the investigation of C. difficile transmission. METHODS: We analyzed retrospectively all toxigenic C. difficile-positive stool samples stored at the Lausanne University Hospital over 6 consecutive months. All isolates were initially typed and classified using a modified double-locus sequence typing (DLST) method. Genome comparison of isolates with the same DLST and clustering were subsequently performed using cgMLST. The electronic administrative records of patients with CDI were investigated for spatiotemporal epidemiological links supporting hospital transmission. A comparative descriptive analysis between genomic and epidemiological data was then performed. RESULTS: From January to June 2021, 86 C. difficile isolates were recovered from thawed samples of 71 patients. Thirteen different DLST types were shared by > 1 patient, and 13 were observed in single patients. A genomic cluster was defined as a set of isolates from different patients with ≤ 3 locus differences, determined by cgMLST. Seven genomic clusters were identified, among which plausible epidemiological links were identified in only 4/7 clusters. CONCLUSION: Among clusters determined by cgMLST analysis, roughly 40% included unexplained HA-CDI acquisitions, which may be explained by unidentified epidemiological links, asymptomatic colonization, and/or shared common community reservoirs. The use of DLST, followed by whole genome sequencing analysis, is a promising and cost-effective stepwise approach for the investigation of CDI transmission in the hospital setting.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Tipificación de Secuencias Multilocus/métodos , Clostridioides difficile/genética , Clostridioides/genética , Estudios Retrospectivos , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Hospitales , Genoma BacterianoRESUMEN
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a multifaceted disease potentially responsible for various clinical manifestations including gastro-intestinal symptoms. Several evidences suggest that the intestine is a critical site of immune cell development, gut microbiota could therefore play a key role in lung immune response. We designed a monocentric longitudinal observational study to describe the gut microbiota profile in COVID-19 patients and compare it to a pre-existing cohort of ventilated non-COVID-19 patients. METHODS: From March to December 2020, we included patients admitted for COVID-19 in medicine (43 not ventilated) or intensive care unit (ICU) (14 ventilated) with a positive SARS-CoV-2 RT-PCR assay in a respiratory tract sample. 16S metagenomics was performed on rectal swabs from these 57 COVID-19 patients, 35 with one and 22 with multiple stool collections. Nineteen non-COVID-19 ICU controls were also enrolled, among which 14 developed ventilator-associated pneumonia (pneumonia group) and five remained without infection (control group). SARS-CoV-2 viral loads in fecal samples were measured by qPCR. RESULTS: Although similar at inclusion, Shannon alpha diversity appeared significantly lower in COVID-19 and pneumonia groups than in the control group at day 7. Furthermore, the microbiota composition became distinct between COVID-19 and non-COVID-19 groups. The fecal microbiota of COVID-19 patients was characterized by increased Bacteroides and the pneumonia group by Prevotella. In a distance-based redundancy analysis, only COVID-19 presented significant effects on the microbiota composition. Moreover, patients in ICU harbored increased Campylobacter and decreased butyrate-producing bacteria, such as Lachnospiraceae, Roseburia and Faecalibacterium as compared to patients in medicine. Both the stay in ICU and patient were significant factors affecting the microbiota composition. SARS-CoV-2 viral loads were higher in ICU than in non-ICU patients. CONCLUSIONS: Overall, we identified distinct characteristics of the gut microbiota in COVID-19 patients compared to control groups. COVID-19 patients were primarily characterized by increased Bacteroides and decreased Prevotella. Moreover, disease severity showed a negative correlation with butyrate-producing bacteria. These features could offer valuable insights into potential targets for modulating the host response through the microbiota and contribute to a better understanding of the disease's pathophysiology. TRIAL REGISTRATION: CER-VD 2020-00755 (05.05.2020) & 2017-01820 (08.06.2018).
Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , SARS-CoV-2 , Bacteroides , ButiratosRESUMEN
Leptospirosis is a global widespread zoonosis caused by a Gram-negative bacterium of the genus Leptospira, belonging to the Spirochaetes phylum, favored by unhealthy living conditions and some professional and recreational aquatic activities. Its diagnosis could be very difficult due to the presence of non-specific clinical presentation and biological anomalies common to other infectious diseases. To detect it, the choice of the right diagnostic method is fundamental. We hereby introduce the case of a patient with no classic risk factors for leptospirosis, showing febrile headaches and rapid deterioration of her general conditions with evolution towards septicemia.
La leptospirose est une zoonose causée par une bactérie Gram négatif du genre Leptospira, appartenant au phylum des Spirochaetes. Elle est répandue dans le monde entier, favorisée par des conditions de vie insalubres et certaines activités professionnelles et récréatives en milieu aquatique. Son diagnostic peut s'avérer difficile en raison de sa présentation clinique et de ses anomalies biologiques peu spécifiques et communes à d'autres maladies. Évoquer ce diagnostic et effectuer le test diagnostique approprié demeure, donc, fondamental. Nous présentons l'histoire d'une patiente sans facteurs de risque classiques de leptospirose, présentant des céphalées fébriles et une détérioration rapide de son état avec une évolution vers une septicémie.
Asunto(s)
Leptospira , Leptospirosis , Sepsis , Humanos , Animales , Femenino , Leptospirosis/diagnóstico , Leptospirosis/microbiología , Zoonosis , Factores de RiesgoRESUMEN
Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell-depleting agents that impair humoral immunity. However, little is known on the impact of anti-CD20 pre-exposition on the kinetics of SARS-CoV-2-specific antibodies. Here, we evaluated the relationship between anti-spike immunoglobulin G (IgG) kinetics and the clinical status or intra-host viral evolution after plasma therapy in 36 eligible hospitalized COVID-19 patients, pre-exposed or not to B-cell-depleting treatments. The majority of anti-CD20 pre-exposed patients (14/17) showed progressive declines of anti-spike IgG titres following plasma therapy, contrasting with the 4/19 patients who had not received B-cell-depleting agents (p = 0.0006). Patients with antibody decay also depicted prolonged clinical symptoms according to the World Health Organization (WHO) severity classification (p = 0.0267) and SARS-CoV-2 viral loads (p = 0.0032) before complete virus clearance. Moreover, they had higher mutation rates than patients able to mount an endogenous humoral response (p = 0.015), including three patients with one to four spike mutations, potentially associated with immune escape. No relevant differences were observed between patients treated with plasma from convalescent and/or mRNA-vaccinated donors. Our study emphasizes the need for an individualized clinical care and follow-up in the management of COVID-19 patients with B-cell lymphopenia.
Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Formación de Anticuerpos , Inmunización Pasiva , Anticuerpos Antivirales , Inmunoglobulina GRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses to the spike (S) protein monomer, S protein native trimeric form, or the nucleocapsid (N) proteins were evaluated in cohorts of individuals with acute infection (n = 93) and in individuals enrolled in a postinfection seroprevalence population study (n = 578) in Switzerland. Commercial assays specific for the S1 monomer, for the N protein, or within a newly developed Luminex assay using the S protein trimer were found to be equally sensitive in antibody detection in the acute-infection-phase samples. Interestingly, compared to anti-S antibody responses, those against the N protein appear to wane in the postinfection cohort. Seroprevalence in a "positive patient contacts" group (n = 177) was underestimated by N protein assays by 10.9 to 32.2%, while the "randomly selected" general population group (n = 311) was reduced by up to 45% relative to the S protein assays. The overall reduction in seroprevalence targeting only anti-N antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was significantly more sensitive compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.IMPORTANCE In the present study, we have determined SARS-CoV-2-specific antibody responses in sera of acute and postinfection phase subjects. Our results indicate that antibody responses against viral S and N proteins were equally sensitive in the acute phase of infection, but that responses against N appear to wane in the postinfection phase where those against the S protein persist over time. The most sensitive serological assay in both acute and postinfection phases used the native S protein trimer as the binding antigen, which has significantly greater conformational epitopes for antibody binding compared to the S1 monomer protein used in other assays. We believe these results are extremely important in order to generate correct estimates of SARS-CoV-2 infections in the general population. Furthermore, the assessment of antibody responses against the trimeric S protein will be critical to evaluate the durability of the antibody response and for the characterization of a vaccine-induced antibody response.
Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/sangre , COVID-19/epidemiología , Femenino , Humanos , Inmunoensayo , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Fosfoproteínas/inmunología , Multimerización de Proteína , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/química , Suiza/epidemiología , Factores de TiempoRESUMEN
Extensive characterization of the human microbiota has revealed promising relationships between microbial composition and health or disease, generating interest in biomarkers derived from microbiota profiling. However, microbiota complexity and technical challenges strongly influencing the results limit the generalization of microbiota profiling and question its clinical utility. In addition, no quality management scheme has been adapted to the specificities of microbiota profiling, notably due to the heterogeneity in methods and results. In this review, we discuss possible adaptation of classical quality management tools routinely used in diagnostic laboratories to microbiota profiling and propose a specific framework. Multiple quality controls are needed to cover all steps, from sampling to data processing. Standard operating procedures, primarily developed for wet lab analyses, must be adapted to the use of bioinformatic tools. Finally, requirements for test validation and proficiency testing must take into account expected discrepancies in results due to the heterogeneity of the processes. The proposed quality management framework should support the implementation of routine microbiota profiling by clinical laboratories to support patient care. Furthermore, its use in research laboratories would improve publication reproducibility as well as transferability of methods and results to routine practice.
Asunto(s)
Metagenómica , Microbiota , Humanos , Metagenómica/métodos , Reproducibilidad de los ResultadosRESUMEN
ChlamDB is a comparative genomics database containing 277 genomes covering the entire Chlamydiae phylum as well as their closest relatives belonging to the Planctomycetes-Verrucomicrobiae-Chlamydiae (PVC) superphylum. Genomes can be compared, analyzed and retrieved using accessions numbers of the most widely used databases including COG, KEGG ortholog, KEGG pathway, KEGG module, Pfam and InterPro. Gene annotations from multiple databases including UniProt (curated and automated protein annotations), KEGG (annotation of pathways), COG (orthology), TCDB (transporters), STRING (protein-protein interactions) and InterPro (domains and signatures) can be accessed in a comprehensive overview page. Candidate effectors of the Type III secretion system (T3SS) were identified using four in silico methods. The identification of orthologs among all PVC genomes allows users to perform large-scale comparative analyses and to identify orthologs of any protein in all genomes integrated in the database. Phylogenetic relationships of PVC proteins and their closest homologs in RefSeq, comparison of transmembrane domains and Pfam domains, conservation of gene neighborhood and taxonomic profiles can be visualized using dynamically generated graphs, available for download. As a central resource for researchers working on chlamydia, chlamydia-related bacteria, verrucomicrobia and planctomyces, ChlamDB facilitates the access to comprehensive annotations, integrates multiple tools for comparative genomic analyses and is freely available at https://chlamdb.ch/. Database URL: https://chlamdb.ch/.
Asunto(s)
Chlamydia/genética , Bases de Datos Genéticas , Genoma Bacteriano , Genómica/métodos , Programas Informáticos , Verrucomicrobia/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Redes y Vías Metabólicas , Mapas de Interacción de ProteínasRESUMEN
BackgroundMycoplasma pneumoniae respiratory infections are transmitted by aerosol and droplets in close contact.AimWe investigated global M. pneumoniae incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020.MethodsWe surveyed M. pneumoniae detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant M. pneumoniae (MRMp) data were collected from 1 April 2017 to 31 March 2021.ResultsThirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 M. pneumoniae detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, M. pneumoniae incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (-93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04).ConclusionsThis comprehensive collection of M. pneumoniae detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers.
Asunto(s)
COVID-19 , Neumonía por Mycoplasma , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Humanos , Macrólidos , Mycoplasma pneumoniae/genética , Pandemias , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/epidemiologíaRESUMEN
Since the introduction of antibiotics, successive waves of Staphylococcus aureus clones occurred, each one having characteristic susceptibility pattern to antibiotics and virulence factors. We report here the results of a molecular epidemiological surveillance of methicillin-resistant S. aureus (MRSA) in French-speaking Switzerland between 2006 and 2020 showing the emergence and disappearance of clones known for their international dissemination, and the sporadic appearance of other international clones. Since 2012, a marked decrease in the incidence of cases attributable to the biology of the clones and to the control measures taken in the hospitals has been observed. These results highlight the importance of continuous surveillance in order to better assess the burden of this multi-resistant pathogen in our region.
Depuis l'introduction des antibiotiques, des vagues successives de clones de Staphylococcus aureus sont apparues, chacun avec un profil de susceptibilité aux antibiotiques et de virulence caractéristique. Nous rapportons ici les résultats d'une surveillance épidémiologique moléculaire de S. aureus résistant à la méticilline (MRSA) en Suisse romande entre 2006 et 2020 montrant l'émergence et la disparition de clones connus pour leur dissémination internationale, ainsi que l'apparition sporadique d'autres clones internationaux. Depuis 2012, une diminution marquée de l'incidence des cas attribuable à la biologie des clones et aux mesures de contrôle prises dans les hôpitaux est observée. Ces résultats nous montrent l'importance d'une surveillance continue afin de mieux évaluer le fardeau que représente ce germe multirésistant dans notre région.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Suiza/epidemiologíaRESUMEN
Although many laboratories worldwide have developed their sequencing capacities in response to the need for SARS-CoV-2 genome-based surveillance of variants, only a few reported some quality criteria to ensure sequence quality before lineage assignment and submission to public databases. Hence, we aimed here to provide simple quality control criteria for SARS-CoV-2 sequencing to prevent erroneous interpretation of low-quality or contaminated data. We retrospectively investigated 647 SARS-CoV-2 genomes obtained over 10 tiled amplicons sequencing runs. We extracted 26 potentially relevant metrics covering the entire workflow from sample selection to bioinformatics analysis. Based on data distribution, critical values were established for 11 selected metrics to prompt further quality investigations for problematic samples, in particular those with a low viral RNA quantity. Low-frequency variants (<70% of supporting reads) can result from PCR amplification errors, sample cross contaminations, or presence of distinct SARS-CoV2 genomes in the sample sequenced. The number and the prevalence of low-frequency variants can be used as a robust quality criterion to identify possible sequencing errors or contaminations. Overall, we propose 11 metrics with fixed cutoff values as a simple tool to evaluate the quality of SARS-CoV-2 genomes, among which are cycle thresholds, mean depth, proportion of genome covered at least 10×, and the number of low-frequency variants combined with mutation prevalence data.
Asunto(s)
COVID-19 , SARS-CoV-2 , Genoma Viral , Humanos , ARN Viral , Estudios RetrospectivosRESUMEN
The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, which potentially cause respiratory infections. In this study, we modeled the spatial distribution of I. ricinus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total of 2,293 ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a collaborative smartphone application, and a prospective campaign. For each tick location, we retrieved from Swiss federal data sets the environmental factors reflecting the topography, climate, and land cover. We then used the Maxent modeling technique to estimate the suitability of particular areas for I. ricinus and to subsequently build the nested niche of Chlamydiales bacteria. Results indicate that I. ricinus habitat suitability is determined by higher temperature and normalized difference vegetation index (NDVI) values, lower temperature during the driest months, and a higher percentage of artificial and forest areas. The performance of the model was improved when extracting the environmental variables for a 100-m radius buffer around the sampling points and when considering the climatic conditions of the 2 years previous to the sampling date. Chlamydiales bacteria were favored by a lower percentage of artificial surfaces, drier conditions, high precipitation during the coldest months, and short distances to wetlands. From 2009 to 2018, we observed an extension of areas suitable to ticks and Chlamydiales, associated with a shift toward higher altitude. The importance of considering spatiotemporal variations in the environmental conditions for obtaining better prediction was also demonstrated.IMPORTANCEIxodes ricinus is the vector of pathogens including the agent of Lyme disease, the tick-borne encephalitis virus, and the less well-known Chlamydiales bacteria, which are responsible for certain respiratory infections. In this study, we identified the environmental factors influencing the presence of I. ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 to 2018. We found an important expansion of suitable areas for both the tick and the bacteria during the last decade. Results also provided the environmental factors that determine the presence of Chlamydiales within ticks. Distribution maps as generated here are expected to bring valuable information for decision makers in controlling tick-borne diseases in Switzerland and establishing prevention campaigns. The methodological framework presented could be used to predict the distribution and spread of other host-pathogen pairs to identify environmental factors driving their distribution and to develop control or prevention strategies accordingly.
Asunto(s)
Distribución Animal , Chlamydiales/aislamiento & purificación , Ecosistema , Interacciones Microbiota-Huesped , Ixodes/microbiología , Aplicaciones Móviles , Animales , Modelos Biológicos , Estaciones del Año , Teléfono Inteligente , Análisis Espacio-Temporal , SuizaRESUMEN
BACKGROUND: Bats are hosts for a variety of microorganisms, however, little is known about the presence of Chlamydiales and hemotropic mycoplasmas. This study investigated 475 captive and free-living bats from Switzerland, Germany, and Costa Rica for Chlamydiales and hemotropic mycoplasmas by PCR to determine the prevalence and phylogeny of these organisms. RESULTS: Screening for Chlamydiales resulted in a total prevalence of 31.4%. Positive samples originated from captive and free-living bats from all three countries. Sequencing of 15 samples allowed the detection of two phylogenetically distinct groups. These groups share sequence identities to Chlamydiaceae, and to Chlamydia-like organisms including Rhabdochlamydiaceae and unclassified Chlamydiales from environmental samples, respectively. PCR analysis for the presence of hemotropic mycoplasmas resulted in a total prevalence of 0.7%, comprising free-living bats from Germany and Costa Rica. Phylogenetic analysis revealed three sequences related to other unidentified mycoplasmas found in vampire bats and Chilean bats. CONCLUSIONS: Bats can harbor Chlamydiales and hemotropic mycoplasmas and the newly described sequences in this study indicate that the diversity of these bacteria in bats is much larger than previously thought. Both, Chlamydiales and hemotropic mycoplasmas are not restricted to certain bat species or countries and captive and free-living bats can be colonized. In conclusion, bats represent another potential host or vector for novel, previously unidentified, Chlamydiales and hemotropic mycoplasmas.
Asunto(s)
Quirópteros/microbiología , Chlamydiaceae/clasificación , Mycoplasma/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Animales , Chile , Chlamydiaceae/genética , Chlamydiaceae/aislamiento & purificación , Costa Rica , ADN Bacteriano/genética , ADN Ribosómico/genética , Alemania , Mycoplasma/genética , Mycoplasma/aislamiento & purificación , Filogenia , Filogeografía , PrevalenciaRESUMEN
Myiasis is an infestation by maggots. In humans, it predominates in regions with low socio-economic development. We report on two cases of myiasis acquired during a tropical travel and in Switzerland, respectively. The first one presented as a furunculous-like disease due to the invasion of subcutaneous tissues by Cordylobia sp. larvae. The second corresponded to a chronic wound infestation that resulted in a rarely reported bacteremia due to Ignatzschineria larvae, a commensal bacteria of maggots' digestive tract. Surgery was necessary in both cases, mainly for psychological reasons in the first case. Both the entomologist and molecular biology were instrumental for treatment decisions.
La myiase est une infestation par des larves de mouches. Chez l'homme, elle prédomine dans les régions à faible niveau socio-économique. Nous rapportons ici deux cas de myiase, l'un acquis lors d'un voyage sous les tropiques et l'autre autochtoneâ : une myiase furonculaire due à la pénétration d'une larve de diptère dans la peau, en l'occurrence Cordylobia sp.â ; et une myiase de plaie survenue par ponte de mouches dans des tissus nécrotiques, avec une exceptionnelle bactériémie secondaire, due à une bactérie commensale du tractus digestif de ces larves, Ignatzschineria larvae. Dans les deux situations, la chirurgie a été nécessaire, pour une indication surtout d'ordre psychologique dans la première. Dans les deux cas, l'apport de l'entomologiste et de la biologie moléculaire a été déterminant dans la décision thérapeutique.