Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083100

RESUMEN

A relevant problem in medicine is the standardization of the diagnosis associated with a clinical case. Although diagnosis formulation is an intrinsically subjective and uncertain process, its standardization may take benefit from digital solutions automating the routines at the basis of such a decision. In this work, we propose ARGO 2.0: a framework for the development of decision support systems for diagnosis formulation. The framework can read free-text reports and store their clinically relevant information as personalized electronic Case Report Forms. A hybrid strategy, exploiting the synergy of Natural Language Processing and Machine Learning techniques, is used to automatically suggest a diagnosis in a standardized fashion. ARGO 2.0 has been designed to be template-independent and easily tailored to specific medical fields. We here demonstrate its feasibility in hemo lympho-pathology, by detailing its implementation, object of an ongoing validation campaign in a standing medical institute. ARGO 2.0 achieved an average Accuracy of 95.07%, an average precision of 94.85%, an average Recall of 96.31% and a F-Score of 95.32% onto the test set, outperforming both its embedded components, based on Natural Language Processing and Machine Learning.


Asunto(s)
Medicina , Procesamiento de Lenguaje Natural , Aprendizaje Automático
2.
Sci Rep ; 11(1): 23823, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893665

RESUMEN

The unstructured nature of Real-World (RW) data from onco-hematological patients and the scarce accessibility to integrated systems restrain the use of RW information for research purposes. Natural Language Processing (NLP) might help in transposing unstructured reports into standardized electronic health records. We exploited NLP to develop an automated tool, named ARGO (Automatic Record Generator for Onco-hematology) to recognize information from pathology reports and populate electronic case report forms (eCRFs) pre-implemented by REDCap. ARGO was applied to hemo-lymphopathology reports of diffuse large B-cell, follicular, and mantle cell lymphomas, and assessed for accuracy (A), precision (P), recall (R) and F1-score (F) on internal (n = 239) and external (n = 93) report series. 326 (98.2%) reports were converted into corresponding eCRFs. Overall, ARGO showed high performance in capturing (1) identification report number (all metrics > 90%), (2) biopsy date (all metrics > 90% in both series), (3) specimen type (86.6% and 91.4% of A, 98.5% and 100.0% of P, 92.5% and 95.5% of F, and 87.2% and 91.4% of R for internal and external series, respectively), (4) diagnosis (100% of P with A, R and F of 90% in both series). We developed and validated a generalizable tool that generates structured eCRFs from real-life pathology reports.


Asunto(s)
Registros Electrónicos de Salud , Hematología , Oncología Médica , Informe de Investigación , Manejo de la Enfermedad , Hematología/métodos , Hematología/normas , Humanos , Oncología Médica/métodos , Oncología Médica/normas , Procesamiento de Lenguaje Natural , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA