Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gene Ther ; 25(5): 345-358, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022127

RESUMEN

We have shown that a lentiviral vector (rSIV.F/HN) pseudotyped with the F and HN proteins from Sendai virus generates high levels of intracellular proteins after lung transduction. Here, we evaluate the use of rSIV.F/HN for production of secreted proteins. We assessed whether rSIV.F/HN transduction of the lung generates therapeutically relevant levels of secreted proteins in the lung and systemic circulation using human α1-anti-trypsin (hAAT) and factor VIII (hFVIII) as exemplars. Sedated mice were transduced with rSIV.F/HN carrying either the secreted reporter gene Gaussia luciferase or the hAAT or hFVIII cDNAs by nasal sniffing. rSIV.F/HN-hAAT transduction lead to therapeutically relevant hAAT levels (70 µg/ml) in epithelial lining fluid, with stable expression persisting for at least 19 months from a single application. Secreted proteins produced in the lung were released into the circulation and stable expression was detectable in blood. The levels of hFVIII in murine blood approached therapeutically relevant targets. rSIV.F/HN was also able to produce secreted hAAT and hFVIII in transduced human primary airway cells. rSIV.F/HN transduction of the murine lungs leads to long-lasting and therapeutically relevant levels of secreted proteins in the lung and systemic circulation. These data broaden the use of this vector platform for a large range of disease indications.


Asunto(s)
Proteína HN/metabolismo , Transfección/métodos , Proteínas Virales de Fusión/metabolismo , Animales , ADN Complementario/metabolismo , Factor VIII , Técnicas de Transferencia de Gen , Genes Reporteros , Terapia Genética , Vectores Genéticos , Humanos , Infecciones por Lentivirus , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/fisiología , Ratones , Sistemas de Translocación de Proteínas/genética , Virus Sendai/metabolismo , Transducción Genética/métodos
2.
Thorax ; 72(6): 510-521, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28087752

RESUMEN

BACKGROUND: Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. OBJECTIVES: To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. METHODS: The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RESULTS: RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. CONCLUSIONS: RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium.


Asunto(s)
Pulmón/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Enfisema Pulmonar/fisiopatología , Regeneración/fisiología , Tretinoina/farmacología , Anciano , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/fisiología , Línea Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Neovascularización Fisiológica/fisiología , Alveolos Pulmonares/patología , Enfisema Pulmonar/patología , ARN Mensajero/genética , Receptores de Ácido Retinoico/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
3.
Thorax ; 72(2): 137-147, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27852956

RESUMEN

We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air-liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and 'benchmarked' against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90-100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017.


Asunto(s)
Fibrosis Quística/genética , Fibrosis Quística/terapia , Terapia Genética/métodos , Lentivirus/genética , Animales , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Ratones , Factor 1 de Elongación Peptídica , Regiones Promotoras Genéticas
4.
Curr Opin Pulm Med ; 22(6): 602-9, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27583674

RESUMEN

PURPOSE OF REVIEW: Since cloning of the disease-causing gene 27 years ago, the development of cystic fibrosis (CF) gene therapy has been pursued. Here, we will summarize key findings with a particular focus on recent developments. RECENT FINDINGS: Almost 3 decades of research have highlighted the complexity of lung gene transfer and have generated a body of data that has recently led to the completion of a large phase IIB study. This trial has, for the first time, shown that nonviral gene transfer can, albeit modestly, stabilize lung function in CF and provides the impetus for further development of more potent gene transfer agents. Lentiviral vectors, specifically pseudotyped to enable entry into airway epithelial cells have most recently been developed. Persistent expression after a single dose and the ability to be administered repeatedly suggest that these viral vectors hold promise for the treatment of CF; a first-in-man clinical trial will shortly be initiated. SUMMARY: Although the development of CF gene therapy has been slower than initially anticipated, recent progress has been encouraging and has renewed the interest of academics and industry to pursue lung gene therapy.


Asunto(s)
Fibrosis Quística/terapia , Terapia Genética , Vectores Genéticos , Humanos , Pulmón , Mutación
5.
Hum Mol Genet ; 22(R1): R52-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23918661

RESUMEN

Since cloning of the CFTR gene more than 20 years ago a large number of pre-clinical and clinical CF gene therapy studies have been performed and a vast amount of information and know-how has been generated. Here, we will review key studies with a particular emphasis on clinical findings. We have learnt that the lung is a more difficult target than originally anticipated, and we describe the strength and weaknesses of the most commonly used airway gene transfer agents (GTAs). In our view, one of the most significant developments in recent years is the generation of lentiviral vectors, which efficiently transduce lung tissue. However, focused and co-ordinated efforts assessing lentiviral vector safety and scaling up of production will be required to move this vector into clinical lung gene therapy studies.


Asunto(s)
Fibrosis Quística/terapia , Terapia Genética/métodos , Vectores Genéticos , Lentivirus/genética , Pulmón , Animales , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Técnicas de Transferencia de Gen , Humanos , Pulmón/patología , Pulmón/virología , Ratones
6.
Hum Gene Ther ; 35(1-2): 5-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062731

RESUMEN

The year 2023 marks the 20th anniversary of the British Society for Gene and Cell Therapy (BSGCT). In these 20 years, the field of gene and cell therapy has gone from promising strategy to clinical reality. This report describes the history, objectives, organization, and activities of BSGCT to advance research and practice of gene and cell therapy in the United Kingdom.


Asunto(s)
Terapia Genética , Sociedades Médicas , Sociedades Médicas/historia , Reino Unido , Aniversarios y Eventos Especiales , Tratamiento Basado en Trasplante de Células y Tejidos
7.
Thorax ; 68(11): 1075-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23525080

RESUMEN

The UK Cystic Fibrosis Gene Therapy Consortium has been working towards clinical gene therapy for patients with cystic fibrosis for several years. We have recently embarked on a large, multi-dose clinical trial of a non-viral, liposome-based formulation powered for the first time to detect clinical benefit. The article describes the details of the protocol.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Fibrosis Quística/terapia , Terapia Genética/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Método Doble Ciego , Estudios de Seguimiento , Humanos , Estudios Prospectivos , Resultado del Tratamiento
8.
Thorax ; 68(6): 532-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23396354

RESUMEN

BACKGROUND: Clinical trials in cystic fibrosis (CF) have been hindered by the paucity of well characterised and clinically relevant outcome measures. AIM: To evaluate a range of conventional and novel biomarkers of CF lung disease in a multicentre setting as a contributing study in selecting outcome assays for a clinical trial of CFTR gene therapy. METHODS: A multicentre observational study of adult and paediatric patients with CF (>10 years) treated for a physician-defined exacerbation of CF pulmonary symptoms. Measurements were performed at commencement and immediately after a course of intravenous antibiotics. Disease activity was assessed using 46 assays across five key domains: symptoms, lung physiology, structural changes on CT, pulmonary and systemic inflammatory markers. RESULTS: Statistically significant improvements were seen in forced expiratory volume in 1 s (p<0.001, n=32), lung clearance index (p<0.01, n=32), symptoms (p<0.0001, n=37), CT scores for airway wall thickness (p<0.01, n=31), air trapping (p<0.01, n=30) and large mucus plugs (p=0.0001, n=31), serum C-reactive protein (p<0.0001, n=34), serum interleukin-6 (p<0.0001, n=33) and serum calprotectin (p<0.0001, n=31). DISCUSSION: We identify the key biomarkers of inflammation, imaging and physiology that alter alongside symptomatic improvement following treatment of an acute CF exacerbation. These data, in parallel with our study of biomarkers in patients with stable CF, provide important guidance in choosing optimal biomarkers for novel therapies. Further, they highlight that such acute therapy predominantly improves large airway parameters and systemic inflammation, but has less effect on airway inflammation.


Asunto(s)
Antibacterianos/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Volumen Espiratorio Forzado/fisiología , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón/fisiopatología , Tomografía Computarizada por Rayos X , Adolescente , Adulto , Antibacterianos/uso terapéutico , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Niño , Fibrosis Quística/diagnóstico , Fibrosis Quística/fisiopatología , Femenino , Humanos , Inyecciones Intravenosas , Interleucina-6/sangre , Complejo de Antígeno L1 de Leucocito/sangre , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/fisiopatología , Masculino , Recurrencia , Resultado del Tratamiento , Adulto Joven
9.
Eur Respir J ; 41(1): 67-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22556022

RESUMEN

Several studies suggest that sex may affect cystic fibrosis (CF) disease severity, with females with CF being more severely affected. In this context, it has been suggested that sex hormones may influence the CF phenotype. A large proportion of females with CF regularly use oral contraceptives (OCs), but the effect of their use on disease severity is unclear. Here, we retrospectively assessed the effects of OCs on clinical outcomes in females with CF. Data from 681 females were available, of whom 42% had taken OCs for varying periods of time. We first performed an inter-patient analysis comparing annual change in % predicted forced expiratory volume in 1 s, body mass index and total days of intravenous antibiotic use over a 5-yr study period in 57 females exposed to and 57 females not exposed to OCs. There were no differences between the two groups. We next performed an intra-patient analysis of the same outcomes over a 3-yr period of OC exposure and a 3-yr period of no OC exposure in the same patient (exposure followed by non-exposure, n=27; non-exposure followed by exposure, n=23), but again did not detect any differences in any of the clinical outcomes. Our data suggests that the use of OCs does not affect CF disease severity.


Asunto(s)
Anticonceptivos Orales/efectos adversos , Fibrosis Quística , Adolescente , Adulto , Femenino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Adulto Joven
10.
Am J Respir Crit Care Med ; 186(9): 846-56, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22955314

RESUMEN

RATIONALE: Ongoing efforts to improve pulmonary gene transfer thereby enabling gene therapy for the treatment of lung diseases, such as cystic fibrosis (CF), has led to the assessment of a lentiviral vector (simian immunodeficiency virus [SIV]) pseudotyped with the Sendai virus envelope proteins F and HN. OBJECTIVES: To place this vector onto a translational pathway to the clinic by addressing some key milestones that have to be achieved. METHODS: F/HN-SIV transduction efficiency, duration of expression, and toxicity were assessed in mice. In addition, F/HN-SIV was assessed in differentiated human air-liquid interface cultures, primary human nasal epithelial cells, and human and sheep lung slices. MEASUREMENTS AND MAIN RESULTS: A single dose produces lung expression for the lifetime of the mouse (~2 yr). Only brief contact time is needed to achieve transduction. Repeated daily administration leads to a dose-related increase in gene expression. Repeated monthly administration to mouse lower airways is feasible without loss of gene expression. There is no evidence of chronic toxicity during a 2-year study period. F/HN-SIV leads to persistent gene expression in human differentiated airway cultures and human lung slices and transduces freshly obtained primary human airway epithelial cells. CONCLUSIONS: The data support F/HN-pseudotyped SIV as a promising vector for pulmonary gene therapy for several diseases including CF. We are now undertaking the necessary refinements to progress this vector into clinical trials.


Asunto(s)
Fibrosis Quística/genética , Terapia Genética/métodos , Vectores Genéticos , Lentivirus/genética , Análisis de Varianza , Animales , Fibrosis Quística/terapia , Modelos Animales de Enfermedad , Femenino , Técnicas de Transferencia de Gen , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Virus de la Inmunodeficiencia de los Simios
11.
J Cyst Fibros ; 22 Suppl 1: S39-S44, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658041

RESUMEN

Most people with Cystic Fibrosis (PwCF) harbor Cystic Fibrosis Transmembrane Conductance (CFTR) mutations that respond to highly effective CFTR modulators (HEM); however, a small fraction of non-responsive variants will require alternative approaches for treatment. Furthermore, the long-term goal to develop a cure for CF will require novel therapeutic strategies. Nucleic acid-based approaches offer the potential to address all CF-causing mutations and possibly a cure for all PwCF. In this minireview, we discuss current knowledge, recent progress, and critical questions surrounding the topic of Gene-, RNA-, and ASO-based therapies for the treatment of Cystic Fibrosis (CF).


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , ARN , Mutación , Terapia Genética
12.
J Gene Med ; 14(7): 491-500, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22711445

RESUMEN

BACKGROUND: The nuclear membrane of differentiated airway epithelial cells is a significant barrier for nonviral vectors. Trans-cyclohexane-1,2-diol (TCHD) is an amphipathic alcohol that has been shown to collapse nuclear pore cores and allow the uptake of macromolecules that would otherwise be too large for nuclear entry. Previous studies have shown that TCHD can increase lipid-mediated transfection in vitro. METHODS: We aimed to reproduce these in vitro studies using the cationic lipid GL67A, which we are currently assessing in cystic fibrosis trials and, more importantly, we assessed the effects of TCHD on transfection efficiency in differentiated airway epithelium ex vivo and in mouse lung in vivo using three different drug delivery protocols (nebulisation and bolus administration of TCHD to the mouse lung, as well as perfusion of TCHD to the nasal epithelium, which prolongs contact time between the airway epithelium and drug). RESULTS: TCHD (0.5-2%) dose-dependently increased Lipofectamine 2000 and GL67A-mediated transfection of 293T cells by up to 2 logs. Encouragingly, exposure to 8% TCHD (but not 0.5% or 2.0%) increased gene expression in fully differentiated human air liquid interface cultures by approximately 20-fold, although this was accompanied by significant cell damage. However, none of the TCHD treated mice in any of the three protocols had higher gene expression compared to no TCHD controls. CONCLUSIONS: Although TCHD significantly increases gene transfer in cell lines and differentiated airway epithelium ex vivo, this effect is lost in vivo and further highlights that promising in vitro findings often cannot be translated into in vivo applications.


Asunto(s)
Ciclohexanos/farmacología , Ciclohexanoles/farmacología , Técnicas de Transferencia de Gen , Poro Nuclear/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos , Animales , Células Cultivadas , Ciclohexanos/administración & dosificación , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Epitelio/efectos de los fármacos , Femenino , Terapia Genética , Vectores Genéticos , Humanos , Lípidos/farmacología , Pulmón/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Mucosa Nasal/efectos de los fármacos , Transfección
13.
Hum Gene Ther ; 33(17-18): 893-912, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074947

RESUMEN

The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.


Asunto(s)
Ácidos Nucleicos de Péptidos , ADN , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/genética , Oligonucleótidos Antisentido , ARN Mensajero , ARN Interferente Pequeño/genética
14.
Mol Ther Methods Clin Dev ; 25: 382-391, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35573048

RESUMEN

We developed a novel lentiviral vector, pseudotyped with the F and HN proteins from Sendai virus (rSIV.F/HN), that produces long-lasting, high-efficiency transduction of the respiratory epithelium. Here we addressed whether this platform technology can secrete sufficient levels of a therapeutic protein into the lungs to ameliorate a fatal pulmonary disease as an example of its translational capability. Pulmonary alveolar proteinosis (PAP) results from alveolar granulocyte-macrophage colony-stimulating factor (GM-CSF) insufficiency, resulting in abnormal surfactant homeostasis and consequent ventilatory problems. Lungs of GM-CSF knockout mice were transduced with a single dose of rSIV.F/HN-expressing murine GM-CSF (mGM-CSF; 1e5-92e7 transduction units [TU]/mouse); mGM-CSF expression was dose related and persisted for at least 11 months. PAP disease biomarkers were rapidly and persistently corrected, but we noted a narrow toxicity/efficacy window. rSIV.F/HN may be a useful platform technology to deliver therapeutic proteins for lung diseases requiring long-lasting and stable expression of secreted proteins.

15.
Am J Respir Cell Mol Biol ; 44(3): 309-15, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20418361

RESUMEN

The "low volume hypothesis," stating that imbalanced ion movement across the cystic fibrosis (CF) airway epithelium leads to a reduction in periciliary fluid (PCL) and consequently impaired mucociliary clearance, has been the prevailing theory explaining CF pathophysiology, and has been supported by animal models and ex vivo cell culture systems. However, studies in freshly obtained human tissue have not yet been performed. Methods to quantify PCL height in freshly obtained airway biopsies may be useful to assess efficacy of new treatments aimed at restoring PCL height. Here, we established methods to quantify PCL height in freshly obtained CF and non-CF human lower airway biopsies. More than 90% of biopsies contained ciliated epithelium, and PCL height measurements were feasible in approximately 50% of these. Although the mean PCL height was reduced in CF tissue (non-CF, 5.60 ± 0.28 µm; CF, 4.52 ± 0.47 µm), this did not reach statistical significance (P = 0.06). To strengthen the data, we performed similar studies in wild-type and CF knockout mice, and confirmed the results (non-CF, 4.70 ± 0.13; CF, 4.10 ± 0.09 µm; P < 0.05). PCL height measurements in freshly obtained human airway biopsies are feasible, and PCL height appears reduced in subjects with CF, thereby further supporting the "low volume hypothesis." However, power calculations indicate that this assay can only be considered as a biomarker in large, late-phase clinical trials, because sample sizes required to achieve sufficient power are comparatively large.


Asunto(s)
Biomarcadores/metabolismo , Biopsia , Tráquea/metabolismo , Adolescente , Adulto , Animales , Biopsia/métodos , Broncoscopía/métodos , Niño , Preescolar , Fibrosis Quística/metabolismo , Células Epiteliales/citología , Líquido Extracelular/metabolismo , Femenino , Humanos , Lactante , Pulmón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión/métodos , Mutación
16.
Mol Ther ; 18(6): 1173-82, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20332767

RESUMEN

Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side. This novel vector was evaluated in mice in vivo and in vitro directed toward CF gene therapy. Here, we show that (i) we can produce relevant titers of an SIV vector pseudotyped with SeV envelope proteins for in vivo use, (ii) this vector can transduce the respiratory epithelium of the murine nose in vivo at levels that may be relevant for clinical benefit in CF, (iii) this can be achieved in a single formulation, and without the need for preconditioning, (iv) expression can last for 15 months, (v) readministration is feasible, (vi) the vector can transduce human air-liquid interface (ALI) cultures, and (vii) functional CF transmembrane conductance regulator (CFTR) chloride channels can be generated in vitro. Our data suggest that this lentiviral vector may provide a step change in airway transduction efficiency relevant to a clinical programme of gene therapy for CF.


Asunto(s)
Fibrosis Quística/terapia , Terapia Genética , Vectores Genéticos , Lentivirus/genética , Virus Sendai/genética , Proteínas del Envoltorio Viral/genética , Animales , Diferenciación Celular , Línea Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Transducción Genética
18.
Am J Respir Cell Mol Biol ; 43(1): 46-54, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19648474

RESUMEN

A clinical program to assess whether lipid GL67A-mediated gene transfer can ameliorate cystic fibrosis (CF) lung disease is currently being undertaken by the UK CF Gene Therapy Consortium. We have evaluated GL67A gene transfer to the murine nasal epithelium of wild-type and CF knockout mice to assess this tissue as a test site for gene transfer agents. The plasmids used were regulated by either (1) the commonly used short-acting cytomegalovirus promoter/enhancer or (2) the ubiquitin C promoter. In a study of approximately 400 mice with CF, vector-specific CF transmembrane conductance regulator (CFTR) mRNA was detected in nasal epithelial cells of 82% of mice treated with a cytomegalovirus-plasmid (pCF1-CFTR), and 62% of mice treated with an ubiquitin C-plasmid. We then assessed whether CFTR gene transfer corrected a panel of CFTR-specific endpoint assays in the murine nose, including ion transport, periciliary liquid height, and ex vivo bacterial adherence. Importantly, even with the comparatively large number of animals assessed, the CFTR function studies were only powered to detect changes of more than 50% toward wild-type values. Within this limitation, no significant correction of the CF phenotype was detected. At the current levels of gene transfer efficiency achievable with nonviral vectors, the murine nose is of limited value as a stepping stone to human trials.


Asunto(s)
Técnicas de Transferencia de Gen , Nariz/patología , Animales , Adhesión Bacteriana , Fibrosis Quística/genética , Citomegalovirus/genética , Elementos de Facilitación Genéticos , Femenino , Terapia Genética/métodos , Liposomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Plásmidos/metabolismo , Regiones Promotoras Genéticas
19.
J Biol Chem ; 284(39): 26978-87, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19638341

RESUMEN

Import of exogenous plasmid DNA (pDNA) into mammalian cell nuclei represents a key intracellular obstacle to efficient non-viral gene delivery. This includes access of the pDNA to the nuclei of non-dividing cells where the presence of an intact nuclear membrane is limiting for gene transfer. Here we identify, isolate, and characterize, cytoplasmic determinants of pDNA nuclear import into digitonin-permeabilized HeLa cells. Depletion of putative DNA-binding proteins, on the basis of their ability to bind immobilized pDNA, abolished pDNA nuclear import supporting the critical role of cytoplasmic factors in this process. Elution of pDNA-bound proteins, followed by two-dimensional sodium dodecyl polyacrylamide gel electrophoresis identified several candidate DNA shuttle proteins. We show that two of these, NM23-H2, a ubiquitous c-Myc transcription-activating nucleoside diphosphate kinase, and the core histone H2B can both reconstitute pDNA nuclear import. Further, we demonstrate a significant increase in gene transfer in non-dividing HeLa cells transiently transfected with pDNA containing binding sequences from two of the DNA shuttle proteins, NM23-H2 and the homeobox transcription factor Chx10. These data support the hypothesis that exogenous pDNA binds to cytoplasmic shuttle proteins and is then translocated to the nucleus using the minimal import machinery. Importantly, increasing the binding of pDNA to shuttle proteins by re-engineering reporter plasmids with shuttle binding sequences enhances gene transfer. Increasing the potential for exogenously added pDNA to bind intracellular transport cofactors may enhance the potency of non-viral gene transfer.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , ADN/metabolismo , Plásmidos/metabolismo , Transporte Activo de Núcleo Celular , Extractos Celulares/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citoplasma/química , ADN/genética , Digitonina/química , Digitonina/farmacología , Electroforesis en Gel Bidimensional , Células HeLa , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Plásmidos/genética , Unión Proteica , Proteínas/análisis , Proteínas/metabolismo , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
20.
J Gene Med ; 12(1): 55-63, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19937989

RESUMEN

BACKGROUND: When assessing the efficacy of gene transfer agents (GTAs) for cystic fibrosis (CF) gene therapy, we routinely evaluate gene transfer in the mouse nose and measure transfection efficiency by assessing transgene-specific mRNA using the real-time (TaqMan) quantitative reverse transcriptase-polymerase chain reaction. TaqMan is traditionally used to quantify expression in whole tissue homogenates, which in the nose would contain many cells types, including respiratory and olfactory epithelium. Only the respiratory epithelium is a satisfactory model for human airway epithelium and therefore CFTR gene transfer should be specifically assessed in respiratory epithelial cells (RECs). METHODS: We have compared laser microdissection, pronase digestion and nasal brushing for: (i) the ability to enrich RECs from the wild-type mouse nose and (ii) the length of time to perform the procedure. Using TaqMan, we subsequently assessed gene transfer in enriched RECs after nasal perfusion of GL67A/pCF1-CFTR complexes in a CF mouse model. RESULTS: Laser microdissection successfully isolated RECs; however, time-consuming sample preparation made this technique unsuitable for high-throughput studies. Pronase digestion was sufficiently rapid but only yielded 19% (range = 13%) RECs (n = 6). The nasal brushing method was superior, yielding 92% (range = 15%) RECs (n = 8) and was equally effective in CF knockout mice (91%, range = 14%, n = 10). Importantly, gene transfer was detectable in brushed RECs from 70% of perfused mice and the number of vector-specific transcripts was comparable to 3.5% of endogenous wild-type Cftr levels. CONCLUSIONS: Isolation of RECs by brushing allows accurate assessment of GTA transfection efficiency in an experimental system that is relevant for CF gene therapy.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación de la Expresión Génica , Cavidad Nasal/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transgenes/genética , Animales , Separación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas de Unión a Ácidos Grasos/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Humanos , Rayos Láser , Ratones , Ratones Endogámicos C57BL , Microdisección , Cavidad Nasal/metabolismo , Tabique Nasal/metabolismo , Tabique Nasal/patología , Pronasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA