Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 44(19): 4702-4705, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568421

RESUMEN

Over the recent years, subwavelength grating (SWG) structures have increasingly attracted attention in the area of evanescent-field photonic sensors. In this Letter, for the first time to the best of our knowledge, we demonstrate experimentally the real-time refractive index (RI) sensing using the SWG bimodal interferometric structures. Two different configurations are considered to compare the effect of the nonlinear phase shift, obtained between the two first transverse electromagnetic propagating modes, in the measured bulk sensitivity. Very high experimental values up to 2270 nm/RIU are reached, which perfectly match the numerical simulations and significantly enhance other existing SWG and spectral-based sensors. By measuring the spectral shift, the obtained experimental sensitivity does not depend on the sensor length. As a result, a highly sensitive and compact single-channel interferometer is experimentally validated for refractive index sensing, thus opening new paths in the field of optical integrated sensors.

2.
Phys Rev Lett ; 123(1): 017402, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31386408

RESUMEN

The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic examples, but synchronizing their nanoscaled versions is challenging. We report synchronization of the mechanical dynamics of a pair of optomechanical crystal cavities that, in contrast to previous works performed in similar objects, are intercoupled with a mechanical link and support independent optical modes. In this regime they oscillate in antiphase, which is in agreement with the predictions of our numerical model that considers reactive coupling. We also show how to temporarily disable synchronization of the coupled system by actuating one of the cavities with a heating laser, so that both cavities oscillate independently. Our results can be upscaled to more than two cavities and pave the way towards realizing integrated networks of synchronized mechanical oscillators.

3.
Opt Express ; 26(8): 9829-9839, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29715929

RESUMEN

Silicon on insulator photonics has offered a versatile platform for the recent development of integrated optomechanical circuits. However, there are some constraints such as the high cost of the wafers and limitation to a single physical device level. In the present work we investigate nanocrystalline silicon as an alternative material for optomechanical devices. In particular, we demonstrate that optomechanical crystal cavities fabricated of nanocrystalline silicon have optical and mechanical properties enabling non-linear dynamical behaviour and effects such as thermo-optic/free-carrier-dispersion self-pulsing, phonon lasing and chaos, all at low input laser power and with typical frequencies as high as 0.3 GHz.

4.
Opt Express ; 20(13): 14698-704, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22714530

RESUMEN

We present an optimized design for a 10G- differential-phase-shift-keyed (DPSK) receiver based on a silicon-on-insulator (SOI) unbalanced tunable Mach-Zehnder interferometer (MZI) switch in sequence with a Mach-Zehnder delay interferometer (MZDI). The proposed design eliminates the limitation in sensitivity of the device produced by the waveguide propagation losses in the delay line. A 2.3 dB increase in receiver sensitivity at a bit-error-rate (BER) of 10(-9) is experimentally measured over a standard implementation. The enhanced sensitivity is achieved with zero power consumption by tuning the operating wavelength or with less than 5 mW for a fixed wavelength using microheaters. Also the foot-print of the device is minimized to 0.11 mm(2) by the use of compact spirals.


Asunto(s)
Interferometría/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Telecomunicaciones/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Sensibilidad y Especificidad
5.
Opt Lett ; 35(21): 3673-5, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21042387

RESUMEN

We report an experimental demonstration of single-strand DNA (ssDNA) detection at room temperature using a photonic-crystal-waveguide-based optical sensor. The sensor surface was previously biofunctionalized with ssDNA probes to be used as specific target receptors. Our experiments showed that it is possible to detect these hybridization events using planar photonic-crystal structures, reaching an estimated detection limit as low as 19.8 nM for the detection of the complementary DNA strand.


Asunto(s)
ADN de Cadena Simple/análisis , Dispositivos Ópticos , Fotones , ADN de Cadena Simple/química , Límite de Detección , Microscopía Electrónica de Rastreo , Hibridación de Ácido Nucleico
6.
Opt Express ; 15(11): 6846-56, 2007 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19546997

RESUMEN

We report on the first demonstration of guiding light in vertical slot-waveguides on silicon nitride/silicon oxide material system. Integrated ring resonators and Fabry-Perot cavities have been fabricated and characterized in order to determine optical features of the slot-waveguides. Group index behavior evidences guiding and confinement in the low-index slot region at O-band (1260-1370nm) telecommunication wavelengths. Propagation losses of <20 dB/cm have been measured for the transverse-electric mode of the slot-waveguides.

7.
Sci Rep ; 5: 15733, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26503448

RESUMEN

We report a novel injection scheme that allows for "phonon lasing" in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10(-2). It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications.

8.
Nat Commun ; 5: 4452, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25043827

RESUMEN

Recent years have witnessed the boom of cavity optomechanics, which exploits the confinement and coupling of optical and mechanical waves at the nanoscale. Among their physical implementations, optomechanical (OM) crystals built on semiconductor slabs enable the integration and manipulation of multiple OM elements in a single chip and provide gigahertz phonons suitable for coherent phonon manipulation. Different demonstrations of coupling of infrared photons and gigahertz phonons in cavities created by inserting defects on OM crystals have been performed. However, the considered structures do not show a complete phononic bandgap, which should enable longer lifetimes, as acoustic leakage is minimized. Here we demonstrate the excitation of acoustic modes in a one-dimensional OM crystal properly designed to display a full phononic bandgap for acoustic modes at 4 GHz. The modes inside the complete bandgap are designed to have high-mechanical Q-factors, limit clamping losses and be invariant to fabrication imperfections.

9.
Opt Lett ; 28(20): 1903-5, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14587770

RESUMEN

A detailed analysis of adiabatic coupling between conventional photonic crystal single-line-defect and coupled-resonator optical waveguides is reported. Adiabatic coupling by progressive variation of the radii of the spacing defects between cavities is investigated. Flat transmission spectra with coupling efficiencies greater than 90% are achieved in a broad frequency range with short coupling lengths. Moreover, we find that flat transmission at low frequencies requires longer coupling lengths partly because the requirements imposed for adiabatic transmission in photonic crystals are violated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA