Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 13(26): 18001-18013, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37323457

RESUMEN

The formation mechanism of plasmonic gold nanoparticles (Au NPs) by fast NaBH4 induced reduction of the precursors is still under debate. In this work we introduce a simple method to access intermediate species of Au NPs by quenching the solid formation process at desired time periods. In this way, we take advantage of the covalent binding of glutathione on Au NPs to stop their growth. By applying a plethora of precise particle characterization techniques, we shed new light on the early stages of particle formation. The results of in situ UV/vis measurements, ex situ sedimentation coefficient analysis by analytical ultracentrifugation, size exclusion high performance liquid chromatography, electrospray ionization mass spectrometry supported by mobility classification and scanning transmission electron microscopy suggest an initial rapid formation of small non-plasmonic Au clusters with Au10 as the main species followed by their growth to plasmonic Au NPs by agglomeration. The fast reduction of gold salts by NaBH4 depends on mixing which is hard to control during the scale-up of batch processes. Thus, we transferred the Au NP synthesis to a continuous flow process with improved mixing. We observed that the mean volume particle sizes and the width of the particle size distribution decrease with increasing flow rate and thus higher energy input. Mixing- and reaction-controlled regimes are identified.

2.
J Colloid Interface Sci ; 641: 251-264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36933471

RESUMEN

HYPOTHESIS: The applicability of the dynamic light scattering method for the determination of particle diffusivity under confinement without applying refractive index matching was not adequately explored so far. The confinement effect on particle diffusion in a porous material which is relevant for particle chromatography has also not yet been fully characterized. EXPERIMENTS: Dynamic light scattering experiments were performed for unimodal dispersions of 11-mercaptoundecanoic acid-capped gold nanoparticles. Diffusion coefficients of gold nanoparticles in porous silica monoliths were determined without limiting refractive index matching fluids. Comparative experiments were also performed with the same nanoparticles and porous silica monolith but applying refractive index matching. FINDINGS: Two distinct diffusivities could be determined inside the porous silica monolith, both smaller than that in free media, showing a slowing-down of the diffusion processes of nanoparticles under confinement. While the larger diffusivity can be related to the slightly slowed-down diffusion of particles in the bulk of the pores and in the necks connecting individual pores, the smaller diffusivity might be related to the diffusion of particles near the pore walls. It shows that the dynamic light scattering method with a heterodyne detection scheme can be used as a reliable and competitive tool for determining particle diffusion under confinement.

3.
Nanoscale ; 14(46): 17354-17364, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378146

RESUMEN

Size-exclusion chromatography (SEC) is a well-known, versatile and scalable technique for the separation of molecules according to their hydrodynamic size in solution as well as for the determination of molecular weight distributions of polymers. In this paper we demonstrate and generalize the applicability of SEC to the classification and characterization of multimodal distributions of nanoparticles over a broad size range. After calibration with gold standards from 5 nm to 80 nm, the calibration curve is used to determine the particle size distributions (PSDs) of the standards which are in agreement with comprehensive nanoparticle size analysis by analytical ultracentrifugation. Universal calibration curves independent of the core material and surface functionality can be constructed if the pore diameter of the stationary phase exceeds the particle diameter by a factor of 2-3. Mixtures of gold standards are separated by SEC and evaluated in terms of peak resolution and size-dependent separation curves depending on how well the individual peaks are resolved. Baseline separation of a multimodal mixture is observed and its PSD is determined. Mixtures can be fractionated into coarse and fine fractions with nm precision at different switching times of the fraction collector. Our study demonstrates the strength of SEC to classify multimodal PSDs as well as to accurately determine size distributions of complex nanoparticle dispersions over a broad size range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA