RESUMEN
Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.
Asunto(s)
Expansión de las Repeticiones de ADN/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Alanina/genética , Animales , Secuencia de Bases/genética , Expansión de las Repeticiones de ADN/fisiología , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Mutación/genética , Linaje , Sindactilia/genética , Factores de Transcripción/metabolismoRESUMEN
During ontogeny, proliferating cells become restricted in their fate through the combined action of cell-type-specific transcription factors and ubiquitous epigenetic machinery, which recognizes universally available histone residues or nucleotides in a context-dependent manner1,2. The molecular functions of these regulators are generally well understood, but assigning direct developmental roles to them is hampered by complex mutant phenotypes that often emerge after gastrulation3,4. Single-cell RNA sequencing and analytical approaches have explored this highly conserved, dynamic period across numerous model organisms5-8, including mouse9-18. Here we advance these strategies using a combined zygotic perturbation and single-cell RNA-sequencing platform in which many mutant mouse embryos can be assayed simultaneously, recovering robust morphological and transcriptional information across a panel of ten essential regulators. Deeper analysis of central Polycomb repressive complex (PRC) 1 and 2 components indicates substantial cooperativity, but distinguishes a dominant role for PRC2 in restricting the germline. Moreover, PRC mutant phenotypes emerge after gross epigenetic and transcriptional changes within the initial conceptus prior to gastrulation. Our experimental framework may eventually lead to a fully quantitative view of how cellular diversity emerges using an identical genetic template and from a single totipotent cell.
Asunto(s)
Epigénesis Genética , Gástrula/embriología , Gástrula/metabolismo , Gastrulación/genética , Animales , Linaje de la Célula , Femenino , Gástrula/citología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Mutación , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Análisis de la Célula Individual , Transcripción GenéticaRESUMEN
Ontogeny describes the emergence of complex multicellular organisms from single totipotent cells. This field is particularly challenging in mammals, owing to the indeterminate relationship between self-renewal and differentiation, variation in progenitor field sizes, and internal gestation in these animals. Here we present a flexible, high-information, multi-channel molecular recorder with a single-cell readout and apply it as an evolving lineage tracer to assemble mouse cell-fate maps from fertilization through gastrulation. By combining lineage information with single-cell RNA sequencing profiles, we recapitulate canonical developmental relationships between different tissue types and reveal the nearly complete transcriptional convergence of endodermal cells of extra-embryonic and embryonic origins. Finally, we apply our cell-fate maps to estimate the number of embryonic progenitor cells and their degree of asymmetric partitioning during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems, which will facilitate the construction of a quantitative framework for understanding developmental processes.
Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endodermo/embriología , Endodermo/metabolismo , Femenino , Fertilización , Gastrulación , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Especificidad de Órganos/genética , Fenotipo , Análisis de Secuencia de ARN , Análisis de la Célula IndividualRESUMEN
To exert regulatory function, miRNAs guide Argonaute (AGO) proteins to partially complementary sites on target RNAs. Crosslinking and immunoprecipitation (CLIP) assays are state-of-the-art to map AGO binding sites, but assigning the targeting miRNA to these sites relies on bioinformatics predictions and is therefore indirect. To directly and unambiguously identify miRNA:target site interactions, we modified our CLIP methodology in C. elegans to experimentally ligate miRNAs to their target sites. Unexpectedly, ligation reactions also occurred in the absence of the exogenous ligase. Our in vivo data set and reanalysis of published mammalian AGO-CLIP data for miRNA-chimeras yielded â¼17,000 miRNA:target site interactions. Analysis of interactions and extensive experimental validation of chimera-discovered targets of viral miRNAs suggest that our strategy identifies canonical, noncanonical, and nonconserved miRNA:targets. About 80% of miRNA interactions have perfect or partial seed complementarity. In summary, analysis of miRNA:target chimeras enables the systematic, context-specific, in vivo discovery of miRNA binding.
Asunto(s)
Proteínas Argonautas/química , Caenorhabditis elegans/genética , MicroARNs/química , Proteínas de Unión al ARN/genética , Animales , Proteínas Argonautas/genética , Sitios de Unión/genética , Caenorhabditis elegans/citología , Línea Celular , Quimera/genética , Células Madre Embrionarias/citología , Células HEK293 , Humanos , Ratones , MicroARNs/genética , Mapeo de Interacción de ProteínasRESUMEN
BACKGROUND: Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. METHODS: Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. RESULTS: By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. CONCLUSIONS: We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.
Asunto(s)
Células Cultivadas/citología , Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Animales , Cerebelo/citología , Drosophila/citología , Embrión no Mamífero/citología , Citometría de Flujo/instrumentación , Perfilación de la Expresión Génica/instrumentación , Humanos , Metanol/química , Ratones , ARN Mensajero/análisis , Rombencéfalo/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual/instrumentación , Programas InformáticosRESUMEN
Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.
Asunto(s)
Proteínas Bacterianas/genética , Diferenciación Celular/genética , Planarias/genética , Estabilidad del ARN/genética , Regeneración/genética , Ribonucleasas/genética , Animales , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Planarias/crecimiento & desarrollo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/citología , Células Madre/metabolismoRESUMEN
Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.
Asunto(s)
Apoptosis , Linaje de la Célula , Metilación de ADN , Endodermo , Regulación del Desarrollo de la Expresión Génica , Animales , Endodermo/citología , Endodermo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fagocitosis , Ratones Endogámicos C57BL , Ratones , Diferenciación Celular , Femenino , Desarrollo Embrionario , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ratones Transgénicos , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismoRESUMEN
Embryo development is an orchestrated process that relies on tight regulation of gene expression to guide cell differentiation and fate decisions. The Srrm2 splicing factor has recently been implicated in developmental disorders and diseases, but its role in early mammalian development remains unexplored. Here, we show that Srrm2 dosage is critical for maintaining embryonic stem cell pluripotency and cell identity. Srrm2 heterozygosity promotes loss of stemness, characterised by the coexistence of cells expressing naive and formative pluripotency markers, together with extensive changes in gene expression, including genes regulated by serum-response transcription factor (SRF) and differentiation-related genes. Depletion of Srrm2 by RNA interference in embryonic stem cells shows that the earliest effects of Srrm2 heterozygosity are specific alternative splicing events on a small number of genes, followed by expression changes in metabolism and differentiation-related genes. Our findings unveil molecular and cellular roles of Srrm2 in stemness and lineage commitment, shedding light on the roles of splicing regulators in early embryogenesis, developmental diseases and tumorigenesis.
Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular/genética , Animales , Ratones , Desarrollo Embrionario/genética , Empalme Alternativo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , HumanosRESUMEN
The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.