Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(6): 1527-38, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638077

RESUMEN

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb).


Asunto(s)
Evolución Biológica , Peces Killi/genética , Cromosomas Sexuales , Envejecimiento , Animales , Femenino , Genoma , Peces Killi/fisiología , Masculino , Datos de Secuencia Molecular , Procesos de Determinación del Sexo
2.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499786

RESUMEN

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Asunto(s)
Apoferritinas , Linfocitos T Reguladores , Animales , Humanos , Ratones , Apoferritinas/genética , Apoferritinas/metabolismo , Linaje de la Célula/genética , Citosina/metabolismo , Factores de Transcripción Forkhead , Hierro/metabolismo
3.
Glia ; 72(8): 1484-1500, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780213

RESUMEN

Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.


Asunto(s)
Encéfalo , Espinas Dendríticas , Ratones Endogámicos C57BL , Microglía , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Espinas Dendríticas/efectos de los fármacos , Masculino , Ratones , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Fagocitosis/fisiología , Fagocitosis/efectos de los fármacos , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Ratones Transgénicos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Compuestos Orgánicos
4.
Immunology ; 172(1): 61-76, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38272677

RESUMEN

The Beige and Chediak-Higashi (BEACH) domain-containing, Neurobeachin-like 2 (NBEAL2) protein is a molecule with a molecular weight of 300 kDa. Inactivation of NBEAL2 by loss-of-function mutations in humans as well as deletion of the Nbeal2 gene in mice results in functional defects in cells of the innate immune system such as neutrophils, NK-cells, megakaryocytes, platelets and of mast cells (MCs). To investigate the detailed function of NBEAL2 in murine MCs we generated MCs from wild type (wt) and Nbeal2-/- mice, and deleted Nbeal2 by CRISPR/Cas9 technology in the murine mast cell line MC/9. We also predicted the structure of NBEAL2 to infer its function and to examine potential mechanisms for its association with interaction partners by using the deep learning-based method RoseTTAFold and the Pymol© software. The function of NBEAL2 was analysed by molecular and immunological techniques such as co-immunoprecipitation (co-IP) experiments, western blotting, enzyme-linked immunosorbent assay and flow cytometry. We identified RPS6 as an interaction partner of NBEAL2. Thereby, the NBEAL2/RPS6 complex formation is probably required to control the protein homeostasis of RPS6 in MCs. Consequently, inactivation of NBEAL2 leads to accumulation of strongly p90RSK-phosphorylated RPS6 molecules which results in the development of an abnormal MC phenotype characterised by prolonged growth factor-independent survival and in a pro-inflammatory MC-phenotype.


Asunto(s)
Mastocitos , Proteína S6 Ribosómica , Animales , Humanos , Ratones , Plaquetas/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Mastocitos/metabolismo , Neutrófilos/metabolismo , Proteína S6 Ribosómica/metabolismo
5.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36318827

RESUMEN

A vast body of studies is available that describe age-dependent gene expression in relation to aging in a number of different model species. These data were obtained from animals kept in conditions with reduced environmental challenges, abundant food, and deprivation of natural sensory stimulation. Here, we compared wild- and captive aging in the short-lived turquoise killifish (Nothobranchius furzeri). These fish inhabit temporary ponds in the African savannah. When the ponds are flooded, eggs hatch synchronously, enabling a precise timing of their individual and population age. We collected the brains of wild fish of different ages and quantified the global age-dependent regulation of transcripts using RNAseq. A major difference between captive and wild populations is that wild populations had unlimited access to food and hence grew to larger sizes and reached asymptotic size more rapidly, enabling the analysis of age-dependent gene expression without the confounding effect of adult brain growth. We found that the majority of differentially expressed genes show the same direction of regulation in wild and captive populations. However, a number of genes were regulated in opposite direction. Genes downregulated in the wild and upregulated in captivity were enriched for terms related to neuronal communication. Genes upregulated in the wild and downregulated in captive conditions were enriched in terms related to DNA replication. Finally, the rate of age-dependent gene regulation was higher in wild animals, suggesting a phenomenon of accelerated aging.


Asunto(s)
Ciprinodontiformes , Fundulidae , Animales , Fundulidae/genética , Envejecimiento/genética , Ciprinodontiformes/genética , Animales Salvajes/genética , Encéfalo
6.
EMBO Rep ; 22(1): e49328, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33300287

RESUMEN

Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para-ortholog, Smed-exoc3, abrogates in vivo tissue homeostasis and regeneration-processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2-deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)-a known inducer of LD formation. Smed-exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl-L-carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2-deficient ESCs and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.


Asunto(s)
Metabolismo de los Lípidos , Planarias , Animales , Diferenciación Celular , Homeostasis , Metabolismo de los Lípidos/genética , Ratones , Planarias/genética , Interferencia de ARN
7.
Nature ; 544(7651): 427-433, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28447635

RESUMEN

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Núcleo Celular/genética , Centrómero/genética , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Variación Genética , Genómica , Haplotipos/genética , Meiosis/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Semillas/genética
8.
Arch Virol ; 168(1): 9, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36566475

RESUMEN

The order Hepelivirales comprises RNA viruses of four families (Alphatetraviridae, Benyviridae, Hepeviridae, and Matonaviridae). Sequencing of virus genomes from water samples from the Havel River and the Teltow Canal (Teltowkanal) in Berlin, Germany, revealed 25 almost complete and 68 partial genomes of viruses presumably belonging to the order Hepelivirales. Only one of these viruses exhibited a relationship to a known member of this order. The members of one virus clade have a polymerase with a permuted order of the conserved palm subdomain motifs resembling the polymerases of permutotetraviruses and birnaviruses. Overall, our study further demonstrates the diversity of hepeliviruses and indicates the enzootic prevalence of hepeliviruses in unknown hosts.


Asunto(s)
Virus ARN , Humanos , Berlin , Virus ARN/genética , Alemania , Ríos
9.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012156

RESUMEN

Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins represents a weakness of epigenetic drugs. Ideally, a new generation of epigenetic drugs should target with molecular precision individual acetylated lysines on the target protein. We exploit a PTM-directed interference, based on an intrabody (scFv-58F) that selectively binds acetylated lysine 9 of histone H3 (H3K9ac), to test the hypothesis that targeting H3K9ac yields more specific effects than inhibiting the corresponding HAT enzyme that installs that PTM. In yeast scFv-58F modulates, gene expression in a more specific way, compared to two well-established HAT inhibitors. This PTM-specific interference modulated expression of genes involved in ribosome biogenesis and function. In mammalian cells, the scFv-58F induces exclusive changes in the H3K9ac-dependent expression of specific genes. These results suggest the H3K9ac-specific intrabody as the founder of a new class of molecules to directly target histone PTMs, inverting the paradigm from inhibiting the writer enzyme to acting on the PTM.


Asunto(s)
Histonas , Lisina , Acetilación , Animales , Epigénesis Genética , Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional
10.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362151

RESUMEN

BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.


Asunto(s)
Neoplasias de la Mama , Genes BRCA1 , Humanos , Femenino , Línea Celular Tumoral , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Recombinación Homóloga , Reparación del ADN/genética , Replicación del ADN , Daño del ADN , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico
11.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955749

RESUMEN

Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 (Nf2) gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of Cd44, RNA sequencing was performed on Cd44-positive and Cd44-negative primary osteosarcoma tissues isolated from Nf2-mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in Cd44-positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (Perp). Deletion of Cd44 in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in Perp mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ratones , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Immunology ; 164(3): 541-554, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34142370

RESUMEN

IL-33 and ATP are alarmins, which are released upon damage of cellular barriers or are actively secreted upon cell stress. Due to high-density expression of the IL-33 receptor T1/ST2 (IL-33R), and the ATP receptor P2X7, mast cells (MCs) are one of the first highly sensitive sentinels recognizing released IL-33 or ATP in damaged peripheral tissues. Whereas IL-33 induces the MyD88-dependent activation of the TAK1-IKK2-NF-κB signalling, ATP induces the Ca2+ -dependent activation of NFAT. Thereby, each signal alone only induces a moderate production of pro-inflammatory cytokines and lipid mediators (LMs). However, MCs, which simultaneously sense (co-sensing) IL-33 and ATP, display an enhanced and prolonged activation of the TAK1-IKK2-NF-κB signalling pathway. This resulted in a massive production of pro-inflammatory cytokines such as IL-2, IL-4, IL-6 and GM-CSF as well as of arachidonic acid-derived cyclooxygenase (COX)-mediated pro-inflammatory prostaglandins (PGs) and thromboxanes (TXs), hallmarks of strong MC activation. Collectively, these data show that co-sensing of ATP and IL-33 results in hyperactivation of MCs, which resembles to MC activation induced by IgE-mediated crosslinking of the FcεRI. Therefore, the IL-33/IL-33R and/or the ATP/P2X7 signalling axis are attractive targets for therapeutical intervention of diseases associated with the loss of integrity of cellular barriers such as allergic and infectious respiratory reactions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hipersensibilidad/inmunología , Interleucina-33/metabolismo , Mastocitos/inmunología , Animales , Antialérgicos/farmacología , Antialérgicos/uso terapéutico , Degranulación de la Célula/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Eicosanoides/metabolismo , Humanos , Hipersensibilidad/tratamiento farmacológico , Proteína 1 Similar al Receptor de Interleucina-1/antagonistas & inhibidores , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/antagonistas & inhibidores , Lipidómica , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Cultivo Primario de Células , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
13.
Plant Mol Biol ; 105(4-5): 543-557, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33486697

RESUMEN

KEY MESSAGE: We studied the DNA-binding profile of the MADS-domain transcription factor SEPALLATA3 and mutant variants by SELEX-seq. DNA-binding characteristics of SEPALLATA3 mutant proteins lead us to propose a novel DNA-binding mode. MIKC-type MADS-domain proteins, which function as essential transcription factors in plant development, bind as dimers to a 10-base-pair AT-rich motif termed CArG-box. However, this consensus motif cannot fully explain how the abundant family members in flowering plants can bind different target genes in specific ways. The aim of this study was to better understand the DNA-binding specificity of MADS-domain transcription factors. Also, we wanted to understand the role of a highly conserved arginine residue for binding specificity of the MADS-domain transcription factor family. Here, we studied the DNA-binding profile of the floral homeotic MADS-domain protein SEPALLATA3 by performing SELEX followed by high-throughput sequencing (SELEX-seq). We found a diverse set of bound sequences and could estimate the in vitro binding affinities of SEPALLATA3 to a huge number of different sequences. We found evidence for the preference of AT-rich motifs as flanking sequences. Whereas different CArG-boxes can act as SEPALLATA3 binding sites, our findings suggest that the preferred flanking motifs are almost always the same and thus mostly independent of the identity of the central CArG-box motif. Analysis of SEPALLATA3 proteins with a single amino acid substitution at position 3 of the DNA-binding MADS-domain further revealed that the conserved arginine residue, which has been shown to be involved in a shape readout mechanism, is especially important for the recognition of nucleotides at positions 3 and 8 of the CArG-box motif. This leads us to propose a novel DNA-binding mode for SEPALLATA3, which is different from that of other MADS-domain proteins known.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ADN de Plantas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Mutantes/metabolismo , Técnica SELEX de Producción de Aptámeros/métodos , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , ADN de Plantas/química , ADN de Plantas/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética
14.
Hum Mol Genet ; 28(24): 4148-4160, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31630195

RESUMEN

Whilst heterozygous germline mutations in the ABRAXAS1 gene have been associated with a hereditary predisposition to breast cancer, their effect on promoting tumourigenesis at the cellular level has not been explored. Here, we demonstrate in patient-derived cells that the Finnish ABRAXAS1 founder mutation (c.1082G > A, Arg361Gln), even in the heterozygous state leads to decreased BRCA1 protein levels as well as reduced nuclear localization and foci formation of BRCA1 and CtIP. This causes disturbances in basal BRCA1-A complex localization, which is reflected by a restraint in error-prone DNA double-strand break repair pathway usage, attenuated DNA damage response and deregulated G2-M checkpoint control. The current study clearly demonstrates how the Finnish ABRAXAS1 founder mutation acts in a dominant-negative manner on BRCA1 to promote genome destabilization in heterozygous carrier cells.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Proteínas Portadoras/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación de Línea Germinal , Adulto , Puntos de Control del Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Genes BRCA1 , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Proteínas Supresoras de Tumor/genética
15.
Cell Mol Life Sci ; 77(16): 3215-3229, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31686119

RESUMEN

To dissect the TBX5 regulatory circuit, we focused on microRNAs (miRNAs) that collectively contribute to make TBX5 a pivotal cardiac regulator. We profiled miRNAs in hearts isolated from wild-type, CRE, Tbx5lox/+and Tbx5del/+ mice using a Next Generation Sequencing (NGS) approach. TBX5 deficiency in cardiomyocytes increased the expression of the miR-183 cluster family that is controlled by Kruppel-like factor 4, a transcription factor repressed by TBX5. MiR-182-5p, the most highly expressed miRNA of this family, was functionally analyzed in zebrafish. Transient overexpression of miR-182-5p affected heart morphology, calcium handling and the onset of arrhythmias as detected by ECG tracings. Accordingly, several calcium channel proteins identified as putative miR-182-5p targets were downregulated in miR-182-5p overexpressing hearts. In stable zebrafish transgenic lines, we demonstrated that selective miRNA-182-5p upregulation contributes to arrhythmias. Moreover, cardiac-specific down-regulation of miR-182-5p rescued cardiac defects in a zebrafish model of Holt-Oram syndrome. In conclusion, miR-182-5p exerts an evolutionarily conserved role as a TBX5 effector in the onset of cardiac propensity for arrhythmia, and constitutes a relevant target for mediating the relationship between TBX5, arrhythmia and heart development.


Asunto(s)
Corazón/crecimiento & desarrollo , MicroARNs/genética , Proteínas de Dominio T Box/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Línea Celular , Regulación hacia Abajo/genética , Femenino , Regulación de la Expresión Génica/genética , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Embarazo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética , Pez Cebra/metabolismo
16.
Nucleic Acids Res ; 47(1): 134-151, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30329080

RESUMEN

Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.


Asunto(s)
Cilios/genética , ADN Helicasas/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Transcripción Genética , Animales , Cilios/patología , Ciliopatías/genética , Ciliopatías/patología , Humanos , Mitosis/genética , Sitio de Iniciación de la Transcripción , Pez Cebra/genética
17.
PLoS Genet ; 14(3): e1007272, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29570707

RESUMEN

The genetics of lifespan determination is poorly understood. Most research has been done on short-lived animals and it is unclear if these insights can be transferred to long-lived mammals like humans. Some African mole-rats (Bathyergidae) have life expectancies that are multiple times higher than similar sized and phylogenetically closely related rodents. To gain new insights into genetic mechanisms determining mammalian lifespans, we obtained genomic and transcriptomic data from 17 rodent species and scanned eleven evolutionary branches associated with the evolution of enhanced longevity for positively selected genes (PSGs). Indicating relevance for aging, the set of 250 identified PSGs showed in liver of long-lived naked mole-rats and short-lived rats an expression pattern that fits the antagonistic pleiotropy theory of aging. Moreover, we found the PSGs to be enriched for genes known to be related to aging. Among these enrichments were "cellular respiration" and "metal ion homeostasis", as well as functional terms associated with processes regulated by the mTOR pathway: translation, autophagy and inflammation. Remarkably, among PSGs are RHEB, a regulator of mTOR, and IGF1, both central components of aging-relevant pathways, as well as genes yet unknown to be aging-associated but representing convincing functional candidates, e.g. RHEBL1, AMHR2, PSMG1 and AGER. Exemplary protein homology modeling suggests functional consequences for amino acid changes under positive selection. Therefore, we conclude that our results provide a meaningful resource for follow-up studies to mechanistically link identified genes and amino acids under positive selection to aging and lifespan determination.


Asunto(s)
Longevidad/genética , Roedores/genética , Selección Genética , Animales , Genoma , Homeostasis , Transporte Iónico , Estrés Oxidativo , Especificidad de la Especie , Transcriptoma
18.
Mol Ecol ; 29(24): 4913-4924, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32672394

RESUMEN

The Southern Ocean is characterized by longitudinal water circulations crossed by strong latitudinal gradients. How this oceanographic background shapes planktonic populations is largely unknown, despite the significance of this region for global biogeochemical cycles. Here, we show, based on genomic, morphometric, ecophysiological and mating compatibility data, an example of ecotypic differentiation and speciation within an endemic pelagic inhabitant, the diatom Fragilariopsis kerguelensis. We discovered three genotypic variants, one present throughout the latitudinal transect sampled, the others restricted to the north and south, respectively. The latter two showed reciprocal monophyly across all three genomes and significant ecophysiological differences consistent with local adaptation, but produced viable offspring in laboratory crosses. The third group was also reproductively isolated from the latter two. We hypothesize that this pattern originated by an adaptive expansion accompanied by ecotypic divergence, followed by sympatric speciation.


Asunto(s)
Diatomeas , Diatomeas/genética , Genotipo , Océanos y Mares
19.
Ann Bot ; 125(7): 1025-1038, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32095807

RESUMEN

BACKGROUND AND AIMS: Despite their abundant odd-ploidy (2n = 5x = 35), dogroses (Rosa sect. Caninae) are capable of sexual reproduction due to their unique meiosis. During canina meiosis, two sets of chromosomes form bivalents and are transmitted by male and female gametes, whereas the remaining chromosomes form univalents and are exclusively transmitted by the egg cells. Thus, the evolution of chromosomes is expected to be driven by their behaviour during meiosis. METHODS: To gain insight into differential chromosome evolution, fluorescence in situ hybridization was conducted for mitotic and meiotic chromosomes in four dogroses (two subsections) using satellite and ribosomal DNA probes. By exploiting high-throughput sequencing data, we determined the abundance and diversity of the satellite repeats in the genus Rosa by analysing 20 pentaploid, tetraploid and diploid species in total. KEY RESULTS: A pericentromeric satellite repeat, CANR4, was found in all members of the genus Rosa, including the basal subgenera Hulthemia and Hesperhodos. The satellite was distributed across multiple chromosomes (5-20 sites per mitotic cell), and its genomic abundance was higher in pentaploid dogroses (2.3 %) than in non-dogrose species (1.3 %). In dogrose meiosis, univalent chromosomes were markedly enriched in CANR4 repeats based on both the number and the intensity of the signals compared to bivalent-forming chromosomes. Single-nucleotide polymorphisms and cluster analysis revealed high intragenomic homogeneity of the satellite in dogrose genomes. CONCLUSIONS: The CANR4 satellite arose early in the evolution of the genus Rosa. Its high content and extraordinary homogeneity in dogrose genomes is explained by its recent amplification in non-recombining chromosomes. We hypothesize that satellite DNA expansion may contribute to the divergence of univalent chromosomes in Rosa species with non-symmetrical meiosis.


Asunto(s)
Rosa/genética , ADN de Plantas , Genoma de Planta , Humanos , Hibridación Fluorescente in Situ , Meiosis , Poliploidía
20.
Arch Virol ; 165(1): 55-67, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31696308

RESUMEN

A swine influenza survey was conducted between 2003 and 2015 in Germany. During this period, 8122 snout swabs or other respiratory specimens from pigs of 5178 herds, mainly from Germany, were investigated for the presence of swine influenza A virus (S-IAV). In total, 1310 S-IAV isolates were collected. Of this collection, the complete genome of 267 H1N2 S-IAV isolates was sequenced and phylogenetically analyzed. The data demonstrate the incursion of human-like swine H1N2 viruses (Gent/1999-like) in 2000 and prevalent circulation until 2010. From 2008 onward, a sustained and broad change of the genetic constellation of the swine H1N2 subtype commenced. The Gent/1999-like swine H1N2 viruses ceased and several new swine H1N2 reassortants emerged and became prevalent in Germany. Of these, the upsurge of the Diepholz/2008-like, Emmelsbuell/2009-like and Papenburg/2010-like viruses is notable. The data reveal the importance of reassortment events in S-IAV evolution. The strong circulation of S-IAV of different lineages in the swine population throughout the year underlines that pigs are important reservoir hosts.


Asunto(s)
Subtipo H1N2 del Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/epidemiología , Virus Reordenados/clasificación , Análisis de Secuencia de ARN/métodos , Animales , Alemania/epidemiología , Humanos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/virología , Filogenia , Prevalencia , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA