Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 13(2): e0192686, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29432473

RESUMEN

High conformal techniques such as intensity-modulated radiation therapy and volumetric-modulated arc therapy are widely used in overloaded radiotherapy departments. In vivo dosimetric screening is essential in this environment to avoid important dosimetric errors. This work examines the feasibility of introducing in vivo dosimetry (IVD) checks in a radiotherapy routine. The causes of dosimetric disagreements between delivered and planned treatments were identified and corrected during the course of treatment. The efficiency of the corrections performed and the added workload needed for the entire procedure were evaluated. The IVD procedure was based on an electronic portal imaging device. A total of 3682 IVD tests were performed for 147 patients who underwent head and neck, abdomen, pelvis, breast, and thorax radiotherapy treatments. Two types of indices were evaluated and used to determine if the IVD tests were within tolerance levels: the ratio R between the reconstructed and planned isocentre doses and a transit dosimetry based on the γ-analysis of the electronic portal images. The causes of test outside tolerance level were investigated and corrected and IVD test was repeated during subsequent fraction. The time needed for each step of the IVD procedure was registered. Pelvis, abdomen, and head and neck treatments had 10% of tests out of tolerance whereas breast and thorax treatments accounted for up to 25%. The patient setup was the main cause of 90% of the IVD tests out of tolerance and the remaining 10% was due to patient morphological changes. An average time of 42 min per day was sufficient to monitor a daily workload of 60 patients in treatment. This work shows that IVD performed with an electronic portal imaging device is feasible in an overloaded department and enables the timely realignment of the treatment quality indices in order to achieve a patient's final treatment compliant with the one prescribed.


Asunto(s)
Dosificación Radioterapéutica , Radioterapia/métodos , Humanos
2.
Technol Cancer Res Treat ; 17: 1533033818779201, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29871570

RESUMEN

PURPOSE: The aim of the in vivo dosimetry, during the fractionated radiation therapy, is the verification of the correct dose delivery to patient. Nowadays, in vivo dosimetry procedures for photon beams are based on the use of the electronic portal imaging device and dedicated software to elaborate electronic portal imaging device images. METHODS: In total, 8474 in vivo dosimetry tests were carried out for 386 patients treated with 3-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and volumetric modulated arc therapy techniques, using the SOFTDISO. SOFTDISO is a dedicated software that uses electronic portal imaging device images in order to (1) calculate the R index, that is, the ratio between daily reconstructed dose and the planned one at isocenter and (2) perform a γ-like analysis between the signals, S, of a reference electronic portal imaging device image and that obtained in a daily fraction. It supplies 2 indexes, the percentage γ% of points with γ < 1 and the mean γ value, γmean. In γ-like analysis, the pass criteria for the signals agreement ΔS% and distance to agreement Δd have been selected based on the clinical experience and technology used. The adopted tolerance levels for the 3 indexes were fixed in 0.95 ≤ R ≤ 1.05, γ% ≥ 90%, and γmean ≤ 0.5. RESULTS: The results of R ratio, γ-like, and a visual inspection of these data reported on a monitor screen permitted to individuate 2 classes of errors (1) class 1 that included errors due to inadequate standard quality controls and (2) class 2, due to patient morphological changes. Depending on the technique and anatomical site, a maximum of 18% of tests had at least 1 index out of tolerance; once removed the causes of class-1 errors, almost all patients (except patients with 4 lung and 2 breast cancer treated with 3-dimensional conformal radiotherapy) presented mean indexes values ([Formula: see text], [Formula: see text]%, and [Formula: see text] ) within tolerance at the end of treatment course. Class-2 errors were found in some patients. CONCLUSIONS: The in vivo dosimetry procedure with SOFTDISO resulted easily implementable, able to individuate errors with a limited workload.


Asunto(s)
Dosimetría in Vivo/métodos , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos , Estudios de Factibilidad , Humanos , Dosificación Radioterapéutica , Radioterapia Conformacional/métodos , Radioterapia de Intensidad Modulada/métodos
3.
Med Biol Eng Comput ; 48(1): 79-86, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20012375

RESUMEN

The transit in vivo dosimetry performed by an electronic portal imaging device (EPID) is a very practical method to check error sources in radiotherapy. Recently, the present authors have developed an in vivo dosimetry method based on correlation functions, F (w, L), defined as the ratio between the transit signal, S(t) (w, L), by the EPID and the mid-plane dose, D(m) (w, L), in a solid water phantom as a function of the phantom thickness, w, and of the field dimensions, L. In particular, generalized correlation functions F (w, L) for 6, 10 and 15 MV X-ray beams supplied by a pilot Varian linac, are here used by other three linacs operating in two centers. This way the workload, due to measurements in solid water phantom, needed to implement the in vivo dosimetry method was avoided. This article reports a feasibility study on the potentiality of this procedure for the adaptive radiotherapy of lung tumors treated by 3D conformal radiotherapy techniques. In particular, the dose reconstruction at the isocenter point D(iso) in the lung tumor has been used as dose-guided radiotherapy (DGRT), to detect the inter-fraction tumor anatomy variations that can require new CT scans and an adaptive plan. When a difference greater than 6% between the predicted dose by the treatment planning system (TPS), D (iso,TPS) and the D(iso) was observed, the clinical action started to detect possible anatomical lung tumor changes. Twelve over twenty patients examined presented in vivo dose discrepancies due to the tumor morphological changes during treatments, and these results were successively confirmed by new CT scans. In this work, for a patient that showed for all beams, D (iso) values over the tolerance level, the new CT scan was used for an adaptive plan. The lung dose volume histogram for D (iso,TPS) = 2 Gy per fraction suggested the adaptive plan. In particular, the lung volume included in 2 Gy increased from 350 cm(3) of the original plan to 550 cm(3) of the hybrid plan, while for the adaptive plan the lung volume included in 2 Gy decreased to 15 cm(3). Moreover, the mean doses to the organs at risk were reduced to 70%. The results of this research show that the DGRT procedure by the D(iso) reconstruction, integrated with radiological imaging, was feasible for periodic investigation on morphological lung tumor changes. This feasibility study takes into account the accuracy of two algorithms based on the pencil beam and collapsed cone convolution models for dose calculations where large density inhomogeneities are present.


Asunto(s)
Neoplasias Pulmonares/radioterapia , Anciano , Estudios de Factibilidad , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Persona de Mediana Edad , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Radioterapia Conformacional/métodos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA