Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(16): 6476-6482, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606798

RESUMEN

Modulating mass transfer is crucial for optimizing the catalytic and separation performances of porous materials. Here, we systematically developed a series of continuously tunable MOFs (CTMOFs) that exhibit incessantly increased mass transfer. This was achieved through the strategic blending of ligands with different lengths and ratios in MOFs featuring the fcu topology. By employing a proportional mixture of two ligands in the synthesis of UiO-66, the micropores expanded, facilitating faster mass transfer. The mass transfer rate was evaluated by dye adsorption, dark-field microscopy, and gas chromatography (GC). The GC performance proved that both too-fast and too-slow mass transfer led to low separation performance. The optimized mass transfer in CTMOFs resulted in an exceptionally high separation resolution (5.96) in separating p-xylene and o-xylene. Moreover, this study represents the first successful use of MOFs for high-performance separation of propylene and propane by GC. This strategy provides new inspiration in regulating mass transfer in porous materials.

2.
Anal Chem ; 96(21): 8325-8331, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38738931

RESUMEN

The high expression of Spermidine/spermine N1-acetyltransferase (SSAT-1) is an important indicator in early cancer diagnosis. Here, we developed a nanopore-based methodology with γ-cyclodextrin as an adaptor to detect and quantify acetylamantadine, the specific SSAT-1-catalyzed product from amantadine, to accordingly reflect the activity of SSAT-1. We employ γ-cyclodextrin and report that amantadine cannot cause any secondary signals in γ-cyclodextrin-assisted α-HL nanopore, while its acetylation product, acetylamantadine, does. This allows γ-cyclodextrin to practically detect acetylamantadine in the interference of excessive amantadine, superior to the previously reported ß-cyclodextrin. The quantification of acetylamantadine was not interfered with even a 50-fold amantadine and displayed no interference in artificial urine sample analysis, which indicates the good feasibility of this nanopore-based methodology in painless cancer prediagnosis. In addition, the discrimination mechanism is also explored by 2-D nuclear magnetic resonance (NMR) and nanopore experiments with a series of adamantane derivatives with different hydrophilic and hydrophobic groups. We found that both the hydrophobic region matching effect and hydrophilic interactions play a synergistic effect in forming a host-guest complex to further generate the characteristic signals, which may provide insights for the subsequent design and study of drug-cyclodextrin complexes.


Asunto(s)
Amantadina , Nanoporos , gamma-Ciclodextrinas , gamma-Ciclodextrinas/química , Humanos , Amantadina/química , Amantadina/análisis , Neoplasias
3.
Opt Lett ; 49(7): 1709-1712, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560843

RESUMEN

In previously reported researches on bound state in the continuum (BIC) waveguides, almost all of them are demonstrated with top-down fabrication procedures, leading to inconvenience for post-manipulation and size tuning. Nanofibers with circular cross sections are the fundamental components to transport energy due to their intrinsic advantages of high flexibility and adjustability, which is replaceable and can be readily manipulated over size and position on the substrate. In this work, we explore the possibility of achieving on-chip integration of silica nanofiber onto a silicon-on-insulator platform. By constructing additional leakage channels in coupled nanofiber waveguides, coherently destructive interferences are successfully achieved. The heavy leakage losses from the low-index nanofiber to a high-index silicon substrate are completely eliminated with BIC, and the propagation length of the nanofiber waveguide is significantly improved.

4.
BMC Oral Health ; 24(1): 48, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191341

RESUMEN

BACKGROUND: The aim of this study was to evaluate the condylar morphological changes after orthodontic treatment in adult patients with Class II malocclusion using a Cone-beam computed tomography (CBCT). METHODS: Images of twenty-eight adult patients with Class II malocclusion who have no temporomandibular symptoms were involved in this study. To analyze the post-treatment changes in condylar morphology, mimics 17.0 software was used to measure several values and reconstruct the three-dimensional condyle, including height of the condyle, area and bone mineral density of the maximum axial and sagittal section, volume and bone mineral density of the three-dimensional condyle and condylar head before and after orthodontic treatment. Using SPSS 19.0 software package Paired t-test was applied for comparison of condylar morphology analysis between pre-treatment and post-treatment. RESULTS: Height of condylar head increase significant (P < .05). Bone mineral density showed a decrease in the maximum axial and sagittal section, three-dimensional condyle and condylar head (P < .01). Evaluation of volume revealed that volume of both condyle and condylar head decrease considerably (P < .05). No significant difference was detected in other values ((P > .05). CONCLUSION: Condylar volume decreased and height of condylar head have changed, so we speculated that adaptive bone remodeling of the condyle occurs.


Asunto(s)
Densidad Ósea , Maloclusión Clase II de Angle , Adulto , Humanos , Tomografía Computarizada de Haz Cónico , Atención Odontológica , Maloclusión Clase II de Angle/diagnóstico por imagen , Maloclusión Clase II de Angle/terapia , Huesos
5.
J Am Chem Soc ; 145(4): 2195-2206, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629383

RESUMEN

Copper-based catalysts are widely explored in electrochemical CO2 reduction (CO2RR) because of their ability to convert CO2 into high-value-added multicarbon products. However, the poor stability and low selectivity limit the practical applications of these catalysts. Here, we proposed a simple and efficient asymmetric low-frequency pulsed strategy (ALPS) to significantly enhance the stability and the selectivity of the Cu-dimethylpyrazole complex Cu3(DMPz)3 catalyst in CO2RR. Under traditional potentiostatic conditions, Cu3(DMPz)3 exhibited poor CO2RR performance with the Faradaic efficiency (FE) of 34.5% for C2H4 and FE of 5.9% for CH4 as well as the low stability for less than 1 h. We optimized two distinguished ALPS methods toward CH4 and C2H4, correspondingly. The high selectivities of catalytic product CH4 (FECH4 = 80.3% and above 76.6% within 24 h) and C2H4 (FEC2H4 = 70.7% and above 66.8% within 24 h) can be obtained, respectively. The ultralong stability for 300 h (FECH4 > 60%) and 145 h (FEC2H4 > 50%) was also recorded with the ALPS method. Microscopy (HRTEM, SAED, and HAADF) measurements revealed that the ALPS method in situ generated and stabilized extremely dispersive and active Cu-based clusters (∼2.7 nm) from Cu3(DMPz)3. Meanwhile, ex situ spectroscopies (XPS, AES, and XANES) and in situ XANES indicated that this ALPS method modulated the Cu oxidation states, such as Cu(0 and I) with C2H4 selectivity and Cu(I and II) with CH4 selectivity. The mechanism under the ALPS methods was explored by in situ ATR-FTIR, in situ Raman, and DFT computation. The ALPS methods provide a new opportunity to boost the selectivity and stability of CO2RR.

6.
J Am Chem Soc ; 145(49): 26580-26591, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38029332

RESUMEN

The precise modulation of nanosheet stacking modes introduces unforeseen properties and creates momentous applications but remains a challenge. Herein, we proposed a strategy using bipolar molecules as torque wrenches to control the stacking modes of 2-D Zr-1,3,5-(4-carboxylphenyl)-benzene metal-organic framework (2-D Zr-BTB MOF) nanosheets. The bipolar phenyl-alkanes, phenylmethane (P-C1) and phenyl ethane (P-C2), predominantly instigated the rotational stacking of Zr-BTB-P-C1 and Zr-BTB-P-C2, displaying a wide angular distribution. This included Zr-BTB-P-C1 orientations at 0, 12, 18, and 24° and Zr-BTB-P-C2 orientations at 0, 6, 12, 15, 24, and 30°. With reduced polarity, phenyl propane (P-C3) and phenyl pentane (P-C5) introduced steric hindrance and facilitated alkyl hydrophobic interactions with the nanosheets, primarily resulting in the modulation of eclipsed stacking for Zr-BTB-P-C3 (64.8%) and Zr-BTB-P-C5 (93.3%) nanosheets. The precise angle distributions of four Zr-BTB-P species were in agreement with theoretical calculations. The alkyl induction mechanism was confirmed by the sequential guest replacement and 2-D 13C-1H heteronuclear correlation (HETCOR). In addition, at the single-particle level, we first observed that rotational stacked pores exhibited similar desorption rates for xylene isomers, while eclipsed stacked pores showed significant discrepancy for xylenes. Moreover, the eclipsed nanosheets as stationary phases exhibited high resolution, selectivity, repeatability, and durability for isomer separation. The universality was proven by another series of bipolar acetate-alkanes. This bipolar molecular torque wrench strategy provides an opportunity to precisely control the stacking modes of porous nanosheets.

7.
Anal Chem ; 95(51): 18760-18766, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38078811

RESUMEN

In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy. Compared with UiO-67-3D with overfast mass transfer and low retention, the reduced porosity of UiO-67-2D increased the mass transfer resistance of analytes in reverse, resulting in improved separation performance. Kinetic diffusion experiments were conducted to verify the difference in mass transfer resistance of the analytes between UiO-67-3D and UiO-67-2D. In addition, the optimization of the UiO-67-2D thickness for separation revealed that a moderate diffusion length of the analytes is more advantageous in achieving the equilibrium of absorption and desorption.

8.
Anal Chem ; 95(47): 17347-17353, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37970751

RESUMEN

Selective recognition of short oligonucleotides at the single-molecule level is particularly important for early disease detection and treatment. In this work, polydopamine (PDA)-coated nanopores were prepared via self-polymerization as a solid-state nanopore sensing platform for the recognition of oligonucleotide C (PolyC). The PDA coating possesses abundant active sites, such as indole, amino, carboxyl, catechol, and quinone structures, which had interactions with short oligonucleotides to slow down the translocation rate. PDA-coated nanopores selectively interact with PolyC20 by virtue of differences in hydrogen bonding forces, generating a larger blocking current, while polyA and polyT demonstrated very small blockings. At the same time, PDA-coated nanopores can sensitively distinguish PolyC with different lengths, such as 20, 14, and 10 nt. The functionalization of PDA on the solid-state nanopore provides an opportunity for the rational design of the recognition surface for biomolecules.


Asunto(s)
Nanoporos , Oligonucleótidos , Nanotecnología , Indoles
9.
Anal Chem ; 95(45): 16496-16504, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37916987

RESUMEN

Protein identification and discrimination at the single-molecule level are big challenges. Solid-state nanopores as a sensitive biosensor have been used for protein analysis, although it is difficult to discriminate proteins with similar structures in the traditional discrimination method based on the current blockage fraction. Here, we select ferritin and apo-ferritin as the model proteins that exhibit identical exterior and different interior structures and verify the practicability of their discrimination with flexibility features by the strategy of gradually decreasing the nanopore size. We show that the larger nanopore (relative to the protein size) has no obvious effect on discriminating two proteins. Then, the comparable-sized nanopore plays a key role in discriminating two proteins based on the dwell time and fraction distribution, and the conformational changes of both proteins are also studied with this nanopore. Finally, in the smaller nanopore, the protein molecules are trapped rather than translocated, where two proteins are obviously discriminated through the current fluctuation caused by the vibration of proteins. This strategy has potential in the discrimination of other important similar proteins.


Asunto(s)
Técnicas Biosensibles , Nanoporos , Ferritinas , Nanotecnología
10.
BMC Endocr Disord ; 23(1): 126, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264363

RESUMEN

BACKGROUND: The association between thyroid hormone sensitivity and thyroid cancer is unknown, and we aimed to investigate the association between sensitivity to thyroid hormone indices and papillary thyroid carcinoma (PTC) in Chinese patients with thyroid nodules (TNs). METHODS: A total of 1,998 patients undergoing thyroid surgery due to TNs from Nanjing Drum Tower Hospital were included in this study. We evaluated central sensitivity to thyroid hormones, such as thyroid stimulating hormone index (TSHI), TSH T4 resistance index (TT4RI), thyroid feedback quantile-based index (TFQI), and parametric thyroid feedback quantile-based Index (PTFQI). Peripheral sensitivity to thyroid hormone was evaluated by FT3 to FT4 ratio. Multivariate logistic regression analysis was performed to evaluate the association between sensitivity to thyroid hormone indices and PTC risk. RESULTS: The results showed that central indices of thyroid hormone sensitivity, including TSHI, TT4RI, TFQI, and PTFQI, were positively associated with PTC risk. For each SD increase in TSHI, TT4RI, TFQI, and PTFQI, the odds ratios (OR, 95% CI) of PTC were 1.31 (1.18-1.46), 1.01 (1.01-1.02), 1.94 (1.45-2.60), and 1.82 (1.41-2.34), respectively. On the other hand, the association between peripheral sensitivity to thyroid hormone and PTC was significantly negative. For each SD increase in FT3/FT4 ratio, the OR (95% CI) of PTC was 0.18 (0.03-0.96), and a negative correlation was found between FT3/FT4 ratio and TNM staging of PTC. CONCLUSIONS: Sensitivity to thyroid hormone indices could be used as new indicators for predicting PTC in Chinese patients with TNs. Future researches are still needed to confirm our findings.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Cáncer Papilar Tiroideo/complicaciones , Nódulo Tiroideo/cirugía , Pueblos del Este de Asia , Hormonas Tiroideas , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/complicaciones , Tirotropina
11.
Appl Opt ; 62(5): 1136-1143, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821210

RESUMEN

We study the problem of misalignment aberration analysis and correction of the two-mirror telescopes with stop on the secondary mirror. The variation law of the system's aberration field is analyzed with nodal aberration theory when the primary mirror with an astigmatic figure error is misaligned. The analytic expression among the system wave aberration, misalignments, and astigmatism figure error is given, and the correction model of system misalignment aberration is established. The simulation experiment shows that the relative error of the prediction of system misalignment coma and astigmatism based on this model is less than 4.1%.

12.
Oral Dis ; 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37660361

RESUMEN

OBJECTIVE: To investigate and explain the beneficial effects of local intra-articular injection of Salubrinal on temporomandibular joint osteoarthritis (TMJOA) using a rabbit model of anterior disc displacement (ADD). METHODS: Rabbits were divided and subjected to surgical ADD. Salubrinal was administered by intra-articular injection in the TMJ every other day for 2 and 4 weeks after operation. Histological examination and TUNEL staining were then performed. Immunohistochemistry, quantitative real-time PCR, and Western blot analysis were employed to evaluate the expression of endoplasmic reticulum (ER) stress-related markers, catabolic factors, extracellular matrix proteins, inflammatory factors, and nuclear factor-kappa B (NF-κB) activation. RESULTS: In the ADD groups, we found that Salubrinal partly reversed condylar cartilage deterioration according to the histological analysis. Salubrinal reduced chondrocytes apoptosis while increased matrix components including Collagen II and Aggrecan. Meanwhile, Salubrinal downregulated the catabolic expression of MMP13, ADAMTS5, VEGF, TNF-α, and IL-1ß. We also observed that Salubrinal inhibited ER stress activation by reducing the expression of GRP78, CHOP, ATF4, and Caspase-12. Additionally, Salubrinal suppressed the phosphorylation of NF-κB. CONCLUSION: These results indicate that Salubrinal alleviates cartilage degradation following ADD, suggesting that intra-articular injection of Salubrinal is a potential therapeutic approach for preventing TMJOA.

13.
Anal Chem ; 94(41): 14251-14256, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36194134

RESUMEN

Peak broadening and peak tailing are common but rebarbative phenomena that always occur when using metal-organic frameworks (MOFs) as stationary phases. These phenomena result in diverse "low-performance" MOF stationary phases. Here, by adjusting the particle size of MOF stationary phases from microscale to nanoscale, we successfully enhance the separation abilities of these "low-performance" MOFs. Three zirconium-based MOFs (NU-1000, PCN-608, and PCN-222) with different organic ligands were synthesized with sizes of tens of micrometers and hundreds of nanometers, respectively. All the nanoscale MOFs exhibited exceedingly higher separation abilities than the respective microscale MOFs. The mechanism investigation proved that reducing the particle size can reduce the mass transfer resistance, thus enhancing the column efficiency by controlling the separation kinetics. Modulating the particle size of MOFs is an efficient way to enhance the separation capability of "low-performance" MOFs and to design high-performance MOF stationary phases.

14.
Appl Opt ; 61(22): 6483-6491, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255871

RESUMEN

We propose a design method for a three-mirror anastigmatic telescope with low misalignment sensitivity and deduce the analytic expression between the misalignment aberration and its optical parameters based on the nodal aberration theory. We establish an optical system as-built performance evaluation model. Using this model as the system's as-built performance evaluation indicator, we can get an optical system that could have both low misalignment sensitivity and good image quality after optimization. The design results of a field bias three-mirror anastigmatic telescope show that the misalignment aberration of the system can be reduced by changing the spacing of the mirrors. When the spacing between the primary mirror and the secondary mirror increases and the spacing from the secondary mirror to the third mirror and the third mirror to the image plane decreases, the misalignment sensitivity will drop significantly. If the mirror spacing is changed by 10%, the misalignment sensitivity of the telescope optimized by our method is only about 85% of that of the traditional method.

15.
Angew Chem Int Ed Engl ; 61(37): e202207786, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35723492

RESUMEN

Precise shaping of metal-organic frameworks (MOFs) is significant in both fundamental coordination chemistry and practical applications, such as catalysis, separation, and biomedicine. Herein, we demonstrated a linker scissoring strategy for precisely shaping MOFs through surface conformational pairing. In this strategy, the bidentate linkers which were designed according to the original tetratopic ligands and the coordination environment of MOF surfaces, were utilized as the covering agents. The shape of these covering agents and the surface conformation of metals onto MOFs restricted them to coordinate on specific MOF facets thus precisely controlling the shape of the MOFs. Different shapes of PCN-608 from nanoplate (PCN-NP) to nanorod (PCN-NR) have been targeted by adding different bidentate linkers. The universality of this strategy was demonstrated by controlling the shapes of the NU-MOFs from nanoplate to nanorod. This strategy provides a new guiding principle to synthesize MOF nanocrystals with controlled shapes.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Cromatografía , Estructuras Metalorgánicas/química , Conformación Molecular
16.
Analyst ; 146(13): 4235-4241, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096937

RESUMEN

Creating more exposed active sites on the metal-organic framework (MOF) surface is crucial for enhancing the recognition ability of MOF artificial receptors. Here, a copper-based MOF Cu(im)2 (im = imidazole) was utilized to act as an artificial receptor, inhibiting the activity of α-chymotrypsin. The shortest diazole ligand reduced the distance between regenerative copper sites, creating as many active sites as possible on the MOF unit surface. The amount of copper(ii) centers on the Cu(im)2 surface was calculated to be 4.96 × 106µm-2. Thus, Cu(im)2 showed exceedingly higher inhibition performance than other copper-based MOFs. The ChT activity was almost inhibited (88.8%) after the incubation with only 20 µg mL-1 Cu(im)2 for 10 min. The binding between ChT and Cu(im)2 was very fast with high affinity. Further results proved that Cu(im)2 inhibited the activity of ChT through electrostatic interactions and coordination interactions via the mixed inhibition mode. This strategy to use short ligands to create more active sites on the MOF surface provides a new direction to enhance the inhibition efficiency.


Asunto(s)
Estructuras Metalorgánicas , Cobre , Ligandos
17.
Inorg Chem ; 60(13): 9653-9659, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34133150

RESUMEN

The synthesis of a specific Sn plane as an efficient electrocatalyst for CO2 electrochemical reduction to generate fuels and chemicals is still a huge challenge. Density functional theory (DFT) calculations first reveal that the Sn(101) crystal plane is more advantageous for CO2 electroreduction. A metal-organic framework (MOF) precursor Sn-MOF has been carbonized and then etched to successfully fabricate Sn(101)/SnO2/C composites with good control of the carbonization time and the concentration of hydrochloric acid. The Sn(101) crystal plane of the catalyst could enhance the faradaic efficiency of formate to as high as 93.3% and catalytic stability up to 20 h. The promotion of the selectivity and activity by Sn(101) advances new possibilities for the rational design of high-activity Sn catalysts derived from MOFs.

18.
Angew Chem Int Ed Engl ; 60(13): 6920-6925, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33480119

RESUMEN

The tuning of metal-organic framework (MOF) nanosheet stacking modes from molecular level was rarely explored although it significantly affected the properties and applications of nanosheets. Here, the different stacking modes of Zr-1, 3, 5-(4-carboxylphenyl)-benzene framework nanosheets were synthesized through the induction of different host-guest noncovalent interactions. The solvents of methyl benzene and ethyl acetate induced twisted stacking of nanosheets with the specific rotation angles of 12°, 18°, 24° and 6°, 18°, 24°, 30°, respectively, which was in agreement with theoretical calculations. Meanwhile, the alkanes were likely to vertically enter the pores of Zr-BTB nanosheets because of steric hindrance and hydrophobic interactions, resulting in the untwisted stacking of nanosheets. The untwisted ordered nanopores showed the excellent gas chromatographic separations of benzene derivative isomers, which was better than twisted nanosheets stacking and commercial columns. This work uncovers a rational strategy to control the stacking of two-dimensional MOF nanosheets.

19.
Angew Chem Int Ed Engl ; 60(52): 27258-27263, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34714946

RESUMEN

High-efficiency photocatalysis in metal-organic frameworks (MOF) and MOF nanosheets (NSs) are often limited by their short-lived charge separation as well as self-quenching. Here, we propose to use the energy-transfer process (EnT) to increase charge separation, thus enhancing the catalytic performance of a series of MOF NSs. With the use of NS, the photocatalyst can also be well isolated to reduce self-quenching. Tetrakis(4-carboxyphenyl) porphyrin (H4 TCPP) and 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) linkers were chosen as the acceptor and donor moieties, respectively. Accounting for the precise spatial design afforded by the MOF NSs, the donor and acceptor moieties could be closely positioned on the NSs, allowing for an efficient EnT process as well as a high degree of site isolation. Two templates, donor-on-acceptor NS and acceptor-on-donor NS catalysts, were successfully synthesized, and the results show that the second one has much enhanced catalytic performances over the first one due to site-isolated active photocatalysts.

20.
Opt Express ; 28(6): 7928-7942, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225428

RESUMEN

The traditional optical design process isolates the two steps of system performance optimization and tolerance allocation, making it difficult to achieve optimal design of as-built performance. To solve this problem, this paper proposes an analytical method for optimizing the as-built performance of optical systems. The method uses the nodal aberration theory to derive the wavefront aberration estimated value under the given surface decenter and tilt tolerance, and establishes the optical system as-built performance evaluation model. The as-built performance evaluation does not require a large amount of ray tracing, which can be completed only by tracking the paraxial marginal ray and the principal ray, and the calculation amount is small. The as-built performance evaluation model can be directly used as error function in optical design software for optical system optimization. A Cooke triplet system is taken as an example to compare the as-built performance optimization method, Code V and Zemax OpticStudio's built-in optimization methods and the traditional method which optimizes only nominal performance by Monte-Carlo tolerance analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA