Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(5): 1222-1230.e10, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442409

RESUMEN

The CC chemokine receptor 7 (CCR7) balances immunity and tolerance by homeostatic trafficking of immune cells. In cancer, CCR7-mediated trafficking leads to lymph node metastasis, suggesting the receptor as a promising therapeutic target. Here, we present the crystal structure of human CCR7 fused to the protein Sialidase NanA by using data up to 2.1 Å resolution. The structure shows the ligand Cmp2105 bound to an intracellular allosteric binding pocket. A sulfonamide group, characteristic for various chemokine receptor ligands, binds to a patch of conserved residues in the Gi protein binding region between transmembrane helix 7 and helix 8. We demonstrate how structural data can be used in combination with a compound repository and automated thermal stability screening to identify and modulate allosteric chemokine receptor antagonists. We detect both novel (CS-1 and CS-2) and clinically relevant (CXCR1-CXCR2 phase-II antagonist Navarixin) CCR7 modulators with implications for multi-target strategies against cancer.


Asunto(s)
Ligandos , Receptores CCR7/metabolismo , Regulación Alostérica , Sitios de Unión , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Neuraminidasa/genética , Neuraminidasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores CCR2/química , Receptores CCR2/metabolismo , Receptores CCR7/antagonistas & inhibidores , Receptores CCR7/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación
2.
Nature ; 591(7851): 677-681, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658720

RESUMEN

The human glycine transporter 1 (GlyT1) regulates glycine-mediated neuronal excitation and inhibition through the sodium- and chloride-dependent reuptake of glycine1-3. Inhibition of GlyT1 prolongs neurotransmitter signalling, and has long been a key strategy in the development of therapies for a broad range of disorders of the central nervous system, including schizophrenia and cognitive impairments4. Here, using a synthetic single-domain antibody (sybody) and serial synchrotron crystallography, we have determined the structure of GlyT1 in complex with a benzoylpiperazine chemotype inhibitor at 3.4 Å resolution. We find that the inhibitor locks GlyT1 in an inward-open conformation and binds at the intracellular gate of the release pathway, overlapping with the glycine-release site. The inhibitor is likely to reach GlyT1 from the cytoplasmic leaflet of the plasma membrane. Our results define the mechanism of inhibition and enable the rational design of new, clinically efficacious GlyT1 inhibitors.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Glicina/metabolismo , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Cristalografía , Humanos , Modelos Moleculares , Piperazinas/química , Piperazinas/farmacología , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Anticuerpos de Dominio Único , Sulfonas/química , Sulfonas/farmacología , Sincrotrones
3.
J Am Chem Soc ; 145(28): 15094-15108, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37401816

RESUMEN

Pharmacological modulation of cannabinoid receptor type 2 (CB2R) holds promise for the treatment of neuroinflammatory disorders, such as Alzheimer's disease. Despite the importance of CB2R, its expression and downstream signaling are insufficiently understood in disease- and tissue-specific contexts. Herein, we report the first ligand-directed covalent (LDC) labeling of CB2R enabled by a novel synthetic strategy and application of platform reagents. The LDC modification allows visualization and study of CB2R while maintaining its ability to bind other ligands at the orthosteric site. We employed in silico docking and molecular dynamics simulations to guide probe design and assess the feasibility of LDC labeling of CB2R. We demonstrate selective, covalent labeling of a peripheral lysine residue of CB2R by exploiting fluorogenic O-nitrobenzoxadiazole (O-NBD)-functionalized probes in a TR-FRET assay. The rapid proof-of-concept validation with O-NBD probes inspired incorporation of advanced electrophiles suitable for experiments in live cells. To this end, novel synthetic strategies toward N-sulfonyl pyridone (N-SP) and N-acyl-N-alkyl sulfonamide (NASA) LDC probes were developed, which allowed covalent delivery of fluorophores suitable for cellular studies. The LDC probes were characterized by a radioligand binding assay and TR-FRET experiments. Additionally, the probes were applied to specifically visualize CB2R in conventional and imaging flow cytometry as well as in confocal fluorescence microscopy using overexpressing and endogenously expressing microglial live cells.


Asunto(s)
Colorantes Fluorescentes , Transducción de Señal , Ligandos , Unión Proteica , Colorantes Fluorescentes/química , Receptores de Cannabinoides
4.
J Chem Inf Model ; 62(7): 1644-1653, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35318851

RESUMEN

The Torsion Library is a collection of torsion motifs associated with angle distributions, derived from crystallographic databases. It is used in strain assessment, conformer generation, and geometry optimization. A hierarchical structure of expert curated SMARTS defines the chemical environments of rotatable bonds and associates these with preferred angles. SMARTS can be very complex and full of implications, which make them difficult to maintain manually. Recent developments in automatically comparing SMARTS patterns can be applied to the Torsion Library to ensure its correctness. We specifically discuss the implementation and the limits of such a procedure in the context of torsion motifs and show several examples of how the Torsion Library benefits from this. All automated changes are validated manually and then shown to have an effect on the angle distributions by correcting matching behavior. The corrected Torsion Library itself is available including both PDB as well as CSD histograms in the Supporting Information and can be used to evaluate rotatable bonds at https://torsions.zbh.uni-hamburg.de.


Asunto(s)
Conformación Molecular , Bases de Datos Factuales , Biblioteca de Genes
5.
Angew Chem Int Ed Engl ; 60(10): 5436-5442, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238058

RESUMEN

Genetic, preclinical and clinical data link Parkinson's disease and Gaucher's disease and provide a rational entry point to disease modification therapy via enhancement of ß-Glucocerebrosidase (GCase) activity. We discovered a new class of pyrrolo[2,3-b]pyrazine activators effecting both Vmax and Km. They bind to human GCase and increase substrate metabolism in the lysosome in a cellular assay. We obtained the first crystal structure for an activator and identified a novel non-inhibitory binding mode at the interface of a dimer, rationalizing the observed structure-activity relationship (SAR). The compound binds GCase inducing formation of a dimeric state at both endoplasmic reticulum (ER) and lysosomal pHs, as confirmed by analytical ultracentrifugation. Importantly, the pyrrolo[2,3-b]pyrazines have central nervous system (CNS) drug-like properties. Our findings are important for future drug discovery efforts in the field of GCase activation and provide a deeper mechanistic understanding of the requirements for enzymatic activation, pointing to the relevance of dimerization.


Asunto(s)
Activadores de Enzimas/metabolismo , Glucosilceramidasa/metabolismo , Multimerización de Proteína/efectos de los fármacos , Pirazinas/metabolismo , Pirroles/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Activadores de Enzimas/química , Glucosilceramidasa/química , Humanos , Cinética , Estructura Molecular , Unión Proteica , Pirazinas/química , Pirroles/química , Relación Estructura-Actividad
6.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32902974

RESUMEN

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Colorantes Fluorescentes/química , Microglía/metabolismo , Receptor Cannabinoide CB2/análisis , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Sondas Moleculares/química , Imagen Óptica , Sensibilidad y Especificidad , Transducción de Señal
7.
Chemistry ; 26(6): 1380-1387, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31961047

RESUMEN

The endocannabinoid (eCB) system is implied in various human diseases ranging from central nervous system to autoimmune disorders. Cannabinoid receptor 2 (CB2 R) is an integral component of the eCB system. Yet, the downstream effects elicited by this G protein-coupled receptor upon binding of endogenous or synthetic ligands are insufficiently understood-likely due to the limited arsenal of reliable biological and chemical tools. Herein, we report the design and synthesis of CB2 R-selective cannabinoids along with their in vitro pharmacological characterization (binding and functional studies). They combine structural features of HU-308 and AM841 to give chimeric ligands that emerge as potent CB2 R agonists with high selectivity over the closely related cannabinoid receptor 1 (CB1 R). The synthesis work includes convenient preparation of substituted resorcinols often found in cannabinoids. The utility of the synthetic cannabinoids in this study is showcased by preparation of the most selective high-affinity fluorescent probe for CB2 R to date.


Asunto(s)
Aminas/química , Cannabinoides/química , Dronabinol/análogos & derivados , Receptor Cannabinoide CB2/metabolismo , Sitios de Unión , Cannabinoides/metabolismo , Dronabinol/química , Dronabinol/metabolismo , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/química
8.
Molecules ; 24(18)2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540271

RESUMEN

(1) Background: The cannabinoid 2 receptor (CB2R) is a promising anti-inflammatory drug target and development of selective CB2R ligands may be useful for treating sight-threatening ocular inflammation. (2) Methods: This study examined the pharmacology of three novel chemically-diverse selective CB2R ligands: CB2R agonists, RO6871304, and RO6871085, as well as a CB2R inverse agonist, RO6851228. In silico molecular modelling and in vitro cell-based receptor assays were used to verify CB2R interactions, binding, cell signaling (ß-arrestin and cAMP) and early absorption, distribution, metabolism, excretion, and toxicology (ADMET) profiling of these receptor ligands. All ligands were evaluated for their efficacy to modulate leukocyte-neutrophil activity, in comparison to the reported CB2R ligand, HU910, using an in vivo mouse model of endotoxin-induced uveitis (EIU) in wild-type (WT) and CB2R-/- mice. The actions of RO6871304 on neutrophil migration and adhesion were examined in vitro using isolated neutrophils from WT and CB2R-/- mice, and in vivo in WT mice with EIU using adoptive transfer of WT and CB2R-/- neutrophils, respectively. (3) Results: Molecular docking studies indicated that RO6871304 and RO6871085 bind to the orthosteric site of CB2R. Binding studies and cell signaling assays for RO6871304 and RO6871085 confirmed high-affinity binding to CB2R and selectivity for CB2R > CB1R, with both ligands acting as full agonists in cAMP and ß-arrestin assays (EC50s in low nM range). When tested in EIU, topical application of RO6871304 and RO6871085 decreased leukocyte-endothelial adhesion and this effect was antagonized by the inverse agonist, RO6851228. The CB2R agonist, RO6871304, decreased in vitro neutrophil migration of WT neutrophils but not neutrophils from CB2R-/-, and attenuated adhesion of adoptively-transferred leukocytes in EIU. (4) Conclusions: These unique ligands are potent and selective for CB2R and have good immunomodulating actions in the eye. RO6871304 and RO6871085, as well as HU910, decreased leukocyte adhesion in EIU through inhibition of resident ocular immune cells. The data generated with these three structurally-diverse and highly-selective CB2R agonists support selective targeting of CB2R for treating ocular inflammatory diseases.


Asunto(s)
Antiinflamatorios/administración & dosificación , Agonistas de Receptores de Cannabinoides/administración & dosificación , Endotoxinas/efectos adversos , Receptor Cannabinoide CB2/antagonistas & inhibidores , Uveítis/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Receptor Cannabinoide CB2/química , Receptor Cannabinoide CB2/genética , Transducción de Señal , Uveítis/inducido químicamente , Uveítis/inmunología
9.
J Am Chem Soc ; 140(19): 6067-6075, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29420021

RESUMEN

Chemical tools and methods that report on G protein-coupled receptor (GPCR) expression levels and receptor occupancy by small molecules are highly desirable. We report the development of LEI121 as a photoreactive probe to study the type 2 cannabinoid receptor (CB2R), a promising GPCR to treat tissue injury and inflammatory diseases. LEI121 is the first CB2R-selective bifunctional probe that covalently captures CB2R upon photoactivation. An incorporated alkyne serves as ligation handle for the introduction of reporter groups. LEI121 enables target engagement studies and visualization of endogenously expressed CB2R in HL-60 as well as primary human immune cells using flow cytometry. Our findings show that strategically functionalized probes allow monitoring of endogenous GPCR expression and engagement in human cells using tandem photoclick chemistry and hold promise as biomarkers in translational drug discovery.


Asunto(s)
Morfolinas/química , Etiquetas de Fotoafinidad/química , Piridinas/química , Receptor Cannabinoide CB2/biosíntesis , Receptor Cannabinoide CB2/metabolismo , Alquinos/química , Células HL-60 , Humanos , Ligandos , Estructura Molecular , Morfolinas/síntesis química , Etiquetas de Fotoafinidad/síntesis química , Piridinas/síntesis química
10.
J Chem Inf Model ; 56(1): 1-5, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26679290

RESUMEN

The Torsion Library contains hundreds of rules for small molecule conformations which have been derived from the Cambridge Structural Database (CSD) and are curated by molecular design experts. The torsion rules are encoded as SMARTS patterns and categorize rotatable bonds via a traffic light coloring scheme. We have systematically revised all torsion rules to better identify highly strained conformations and minimize the number of false alerts for CSD small molecule X-ray structures. For this new release, we added or substantially modified 78 torsion patterns and reviewed all angles and tolerance intervals. The overall number of red alerts for a filtered CSD data set with 130 000 structures was reduced by a factor of 4 compared to the predecessor. This is of clear advantage in 3D virtual screening where hits should only be removed by a conformational filter if they are in energetically inaccessible conformations.


Asunto(s)
Biología Computacional/métodos , Conformación Molecular , Bibliotecas de Moléculas Pequeñas/química , Bases de Datos Farmacéuticas , Diseño de Fármacos , Modelos Moleculares
11.
ACS Cent Sci ; 10(5): 956-968, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799662

RESUMEN

We report a blueprint for the rational design of G protein coupled receptor (GPCR) ligands with a tailored functional response. The present study discloses the structure-based design of cannabinoid receptor type 2 (CB2R) selective inverse agonists (S)-1 and (R)-1, which were derived from privileged agonist HU-308 by introduction of a phenyl group at the gem-dimethylheptyl side chain. Epimer (R)-1 exhibits high affinity for CB2R with Kd = 39.1 nM and serves as a platform for the synthesis of a wide variety of probes. Notably, for the first time these fluorescent probes retain their inverse agonist functionality, high affinity, and selectivity for CB2R independent of linker and fluorophore substitution. Ligands (S)-1, (R)-1, and their derivatives act as inverse agonists in CB2R-mediated cAMP as well as G protein recruitment assays and do not trigger ß-arrestin-receptor association. Furthermore, no receptor activation was detected in live cell ERK1/2 phosphorylation and Ca2+-release assays. Confocal fluorescence imaging experiments with (R)-7 (Alexa488) and (R)-9 (Alexa647) probes employing BV-2 microglial cells visualized CB2R expressed at endogenous levels. Finally, molecular dynamics simulations corroborate the initial docking data in which inverse agonists restrict movement of toggle switch Trp2586.48 and thereby stabilize CB2R in its inactive state.

12.
Bioorg Med Chem Lett ; 23(14): 4239-43, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23735744

RESUMEN

A series of amides bearing a variety of amidine head groups was investigated as BACE1 inhibitors with respect to inhibitory activity in a BACE1 enzyme as well as a cell-based assay. Determination of their basicity as well as their properties as substrates of P-glycoprotein revealed that a 2-amino-1,3-oxazine head group would be a suitable starting point for further development of brain penetrating compounds for potential Alzheimer's disease treatment.


Asunto(s)
Amidas/química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Inhibidores de Proteasas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Amidas/metabolismo , Amidas/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
13.
ACS Omega ; 8(2): 2367-2376, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687043

RESUMEN

The human neuropeptide neuromedin S (NMS) consists of 33 amino acids. The introduction of tritium atoms into NMS has not been described so far. This represents a gap for using [3H]NMS in radioreceptor binding assays or in tracking and monitoring their metabolic pathway. Two approaches for the incorporation of tritium into NMS were explored in this study: (1) halogenation at the His-18 residue followed by catalyzed iodine-127/tritium exchange and (2) conjugation of tritiated N-succinimidyl-[2,3-3H3]propionate ([3H]NSP) to at least one of the three available primary amines of amino acids Ile-1, Lys-15, and Lys-16 in the peptide sequence. Although iodination of histidine was achieved, subsequent iodine-127/deuterium exchange was unsuccessful. Derivatization at the three possible amino positions in the peptide using nonradioactive NSP resulted in a mixture of unconjugated NSM and 1- to 3-conjugations at different amino acids in the peptide sequence. Each labeling position in the mixture was assigned following detailed LC-MS/MS analysis. After separating the mixture, it was shown in an in vitro fluorometric imaging plate reader (FLIPR) and in a competitive binding assay that the propionyl-modified NMS derivatives were comparable to the unlabeled NMS, regardless of the degree of labeling and the labeling position(s). A molecular simulation with NMS in the binding pocket of the protein neuromedin U receptor 2 (NMUR2) confirmed that the possible labeling positions are located outside the binding region of NMUR2. Tritium labeling was achieved at the N-terminal Ile-1 using [3H]NSP in 7% yield with a radiochemical purity of >95% and a molar activity of 90 Ci/mmol. This approach provides access to tritiated NMS and enables new investigations to characterize NMS or corresponding NMS ligands.

14.
Methods Mol Biol ; 2576: 477-493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152211

RESUMEN

Computational methods in medicinal chemistry facilitate drug discovery and design. In particular, machine learning methodologies have recently gained increasing attention. This chapter provides a structured overview of the current state of computational chemistry and its applications for the interrogation of the endocannabinoid system (ECS), highlighting methods in structure-based drug design, virtual screening, ligand-based quantitative structure-activity relationship (QSAR) modeling, and de novo molecular design. We emphasize emerging methods in machine learning and anticipate a forecast of future opportunities of computational medicinal chemistry for the ECS.


Asunto(s)
Química Computacional , Endocannabinoides , Diseño de Fármacos , Ligandos , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa
15.
Front Pharmacol ; 14: 1158091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637423

RESUMEN

Introduction: The cannabinoid receptor (CBR) subtypes 1 (CB1R) and 2 (CB2R) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CB1R and CB2R are Gαi protein-coupled receptors but detecting Gαi protein signalling activity reliably and reproducibly is challenging. This is due to the inherent variability in live cell-based assays and restrictions around the use of radioactive [35S]-GTPγS, a favoured technology for developing higher-throughput membrane-based Gαi protein activity assays. Methods: Here, we describe the development of a membrane-based Gαi signalling system, produced from membrane preparations of HEK293TR cells, stably overexpressing CB1R or CB2R, and components of the Gαi-CASE biosensor. This BRET-based system allows direct detection of Gαi signalling in both cells and membranes by monitoring bioluminescence resonance energy transfer (BRET) between the α and the ßγ subunits. Cells and membranes were subject to increasing concentrations of reference cannabinoid compounds, with 10 µM furimazine added to generate RET signals, which were detected on a PHERAstar FSX plate reader, then processed using MARS software and analysed in GraphPad PRISM 9.2. Results: In membranes expressing the Gi-CASE biosensor, the cannabinoid ligands profiled were found to show agonist and inverse agonist activity. Agonist activity elicited a decrease in the BRET signal, indicative of receptor activation and G protein dissociation. Inverse agonist activity caused an increase in BRET signal, indicative of receptor inactivation, and the accumulation of inactive G protein. Our membrane-based Gi-CASE NanoBRET system successfully characterised the potency (pEC50) and efficacy (Emax) of CBR agonists and inverse agonists in a 384-well screening format. Values obtained were in-line with whole-cell Gi-CASE assays and consistent with literature values obtained in the GTPγS screening format. Discussion: This novel, membrane-based Gαi protein activation assay is applicable to other Gαi-coupled GPCRs, including orphan receptors, allowing real-time higher-throughput measurements of receptor activation.

16.
J Chem Inf Model ; 52(6): 1499-512, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22670896

RESUMEN

Advantages like intuitive interpretation, objectivity, general applicability, and its easy, automated calculation make the rmsd (root-mean-squared deviation) the measure of choice for the investigation of the accuracy of conformational model generators. For comparing conformations of a single molecule this is a clearly superior method. Single molecule analysis is, however, a rare scenario. Typically, conformations are generated for huge corporate or external vendor databases of high diversity which are then further investigated with high-throughput computational methods like docking or pharmacophore searching, in virtual screening campaigns. Representative subsets for accuracy investigations of computational methods need to mimic this diversity. Averaged rmsd values over these data sets are frequently used to assess the accuracy of the methods. There are, however, significant weaknesses in rmsd comparisons for such kind of data sets. The interpretation is for example no longer intuitive because what can be expected in terms of good or bad rmsd values crucially depends on the data set composition like size or number of rotatable bonds of the underlying molecules. Further, rmsd lacks normalization which might result in very high averaged rmsd values for highly flexible molecules and thus might completely skew results. We have developed a novel measure to compare conformations of molecules called Torsion Fingerprint Deviation (TFD). It extracts, weights, and compares Torsion Fingerprints from a query molecule and generated conformations under consideration of acyclic bonds as well as ring systems. TFD is alignment-free and overcomes major limitations of rmsd while retaining its advantages.


Asunto(s)
Conformación Molecular , Bases de Datos Factuales , Modelos Moleculares
17.
Chem Sci ; 13(19): 5539-5545, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694350

RESUMEN

Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.

18.
J Comput Aided Mol Des ; 25(10): 931-45, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21922280

RESUMEN

De novo ligand design supports the search for novel molecular scaffolds in medicinal chemistry projects. This search can either be based on structural information of the targeted active site (structure-based approach) or on similarity to known binders (ligand-based approach). In the absence of structural information on the target, pharmacophores provide a way to find topologically novel scaffolds. Fragment spaces have proven to be a valuable source for molecular structures in de novo design that are both diverse and synthetically accessible. They also offer a simple way to formulate custom chemical spaces. We have implemented a new method which stochastically constructs new molecules from fragment spaces under consideration of a three dimensional pharmacophore. The program has been tested on several published pharmacophores and is shown to be able to reproduce scaffold hops from the literature, which resulted in new chemical entities.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Diseño de Fármacos , Proteínas de Fusión bcr-abl/química , Fragmentos de Péptidos/química , Proteínas Tirosina Quinasas/química , Programas Informáticos , Algoritmos , Dominio Catalítico , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Proteínas Tirosina Quinasas/antagonistas & inhibidores
19.
Bioorg Med Chem Lett ; 19(21): 6106-13, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19786348

RESUMEN

SAR studies of a recently described SST5R selective benzoxazole piperidine lead series are described with particular focus on the substitution pattern on the benzyl and benzoxazole side-chains. Introduction of a second meta substituent at the benzyl unit significantly lowers residual hH1 activity and insertion of substituents onto the benzoxazole periphery entirely removes remaining h5-HT2B activity. Compounds with single digit nM activity, functional antagonism and favorable physicochemical properties endowed with a good pharmacokinetic profile in rats are described which should become valuable tools for exploring the pharmacological role of the SST5 receptor in vivo.


Asunto(s)
Benzoxazoles/química , Piperidinas/química , Receptores de Somatostatina/antagonistas & inhibidores , Animales , Benzoxazoles/síntesis química , Benzoxazoles/farmacocinética , Cristalografía por Rayos X , Masculino , Conformación Molecular , Piperidinas/síntesis química , Piperidinas/farmacocinética , Ratas , Ratas Wistar , Receptores de Somatostatina/metabolismo , Relación Estructura-Actividad
20.
J Pharmacol Toxicol Methods ; 99: 106609, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31284073

RESUMEN

BACKGROUND: Several factors contribute to the development failure of novel pharmaceuticals, one of the most important being adverse effects in pre-clinical and clinical studies. Early identification of off-target compound activity can reduce safety-related attrition in development. In vitro profiling of drug candidates against a broad range of targets is an important part of the compound selection process. Many compounds are synthesized during early drug discovery, making it necessary to assess poly-pharmacology at a limited number of targets. This paper describes how a rational, statistical-ranking approach was used to generate a cost-effective, optimized panel of assays that allows selectivity focused structure-activity relationships to be explored for many molecules. This panel of 50 targets has been used to routinely screen Roche small molecules generated across a diverse range of therapeutic targets. Target hit rates from the Bioprint® database and internal Roche compounds are discussed. We further describe an example of how this panel was used within an anti-infective project to reduce in vivo testing. METHOD: To select the optimized panel of targets, IC50 values of compounds in the BioPrint® database were used to identify assay "hits" i.e. IC50 ≤ 1 µM in 123 different in vitro pharmacological assays. If groups of compounds hit the same targets, the target with the higher hit rate was selected, while others were considered redundant. Using a step-wise analysis, an assay panel was identified to maximize diversity and minimize redundancy. Over a five-year period, this panel of 50 off-targets was used to screen ≈1200 compounds synthesized for Roche drug discovery programs. Compounds were initially tested at 10 µM and hit rates generated are reported. Within one project, the number of hits was used to refine the choice of compounds being assessed in vivo. RESULTS: 95% of compounds from the BioPrint® panel were identified within the top 47-ranked assays. Based on this analytical approach and the addition of three targets with established safety concerns, a Roche panel was created for external screening. hERG is screened internally and not included in this analysis. Screening at 10 µM in the Roche panel identified that adenosine A3 and 5HT2B receptors had the highest hit rates (~30%), with 50% of the targets having a hit rate of ≤4%. An anti-infective program identified that a high number of hits in the Roche panel was associated with mortality in 19 mouse tolerability studies. To reduce the severity and number of such studies, future compound selections integrated the panel hit score into the selection process for in vivo studies. It was identified that compounds which hit less targets in the panel and had free plasma exposures of ~2 µM were generally better tolerated. DISCUSSION: This paper describes how an optimized panel of 50 assays was selected on the basis of hit similarity at 123 targets. This reduced panel, provides a cost-effective screening panel for assessing compound promiscuity, whilst also including many safety-relevant targets. Frequent use of the panel in early drug discovery has provided promiscuity and safety-relevant information to inform pre-clinical drug development at Roche.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA