Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137328

RESUMEN

With nearly 700 structures solved and a growing number of customized structure prediction algorithms being developed at a fast pace, G protein-coupled receptors (GPCRs) are an optimal test case for validating new approaches for the prediction of receptor active state and ligand bioactive conformation complexes. In this study, we leveraged the availability of hundreds of peptide GPCRs in the active state and both classical homology and artificial intelligence (AI) based protein modeling combined with docking and AI-based peptide structure prediction approaches to predict the nociceptin/orphanin FQ-NOP receptor active state complex (N/OFQ-NOPa). The In Silico generated hypotheses were validated via the design, synthesis, and pharmacological characterization of novel linear N/OFQ(1-13)-NH2 analogues, leading to the discovery of a novel antagonist (3B; pKB = 6.63) bearing a single ring-constrained residue in place of the Gly2-Gly3 motif of the N/OFQ message sequence (FGGF). While the experimental validation was ongoing, the availability of the Cryo-EM structure of the predicted complex enabled us to unambiguously validate the generated hypotheses. To the best of our knowledge, this is the first example of a peptide-GPCR complex predicted with atomistic accuracy (full complex Cα RMSD < 1.0 Å) and of the N/OFQ message moiety being successfully modified with a rigid scaffold.

2.
EJNMMI Radiopharm Chem ; 9(1): 38, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705946

RESUMEN

BACKGROUND: Positron emission tomography (PET) is a highly sensitive method that provides fine resolution images, useful in the field of clinical diagnostics. In this context, Zirconium-89 (89Zr)-based imaging agents have represented a great challenge in molecular imaging with immuno-PET, which employs antibodies (mAbs) as biological vectors. Indeed, immuno-PET requires radionuclides that can be attached to the mAb to provide stable in vivo conjugates, and for this purpose, the radioactive element should have a decay half-life compatible with the time needed for the biodistribution of the immunoglobulin. In this regard, 89Zr is an ideal radioisotope for immuno-PET because its half-life perfectly matches the in vivo pharmacokinetics of mAbs. RESULTS: The main objective of this work was the design and synthesis of a series of bifunctional octadentate pseudopeptides able to generate stable 89Zr complexes. To achieve this, here we investigated hydroxamate, N-methylhydroxamate and catecholate chelating moieties in complexing radioactive zirconium. N-methylhydroxamate proved to be the most effective 89Zr-chelating group. Furthermore, the increased flexibility and hydrophilicity obtained by using polyoxyethylene groups spacing the hydroxamate units led to chelators capable of rapidly forming (15 min) stable and water-soluble complexes with 89Zr under mild reaction conditions (aqueous environment, room temperature, and physiological pH) that are mandatory for complexation reactions involving biomolecules. Additionally, we report challenge experiments with the competitor ligand EDTA and metal ions such as Fe3+, Zn2+ and Cu2+. In all examined conditions, the chelators demonstrated stability against transmetallation. Finally, a maleimide moiety was introduced to apply one of the most promising ligands in bioconjugation reactions through Thiol-Michael chemistry. CONCLUSION: Combining solid phase and solution synthesis techniques, we identified novel 89Zr-chelating molecules with a peptide scaffold. The adopted chemical design allowed modulation of molecular flexibility, hydrophilicity, as well as the decoration with different zirconium chelating groups. Best results in terms of 89Zr-chelating properties were achieved with the N-methyl hydroxamate moiety. The Zirconium complexes obtained with the most effective compounds were water-soluble, stable to transmetallation, and resistant to peptidases for at least 6 days. Further studies are needed to assess the potential of this novel class of molecules as Zirconium-chelating agents for in vivo applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA