Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Immunity ; 56(7): 1631-1648.e10, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37392737

RESUMEN

CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Diferenciación Celular , Proliferación Celular , Receptores de Antígenos de Linfocitos T
2.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053331

RESUMEN

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias/inmunología , Proteínas de Dominio T Box/inmunología , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Transcriptoma/inmunología , Microambiente Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
3.
Nat Immunol ; 17(9): 1025-36, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27540992

RESUMEN

Alteration in the expression of cell-surface proteins is a common consequence of malignant transformation. Natural killer (NK) cells use an array of germline-encoded activating and inhibitory receptors that scan for altered protein-expression patterns, but tumor evasion of detection by the immune system is now recognized as one of the hallmarks of cancer. NK cells display rapid and potent immunity to metastasis or hematological cancers, and major efforts are now being undertaken to fully exploit NK cell anti-tumor properties in the clinic. Diverse approaches encompass the development of large-scale NK cell-expansion protocols for adoptive transfer, the establishment of a microenvironment favorable to NK cell activity, the redirection of NK cell activity against tumor cells and the release of inhibitory signals that limit NK cell function. In this Review we detail recent advances in NK cell-based immunotherapies and discuss the advantages and limitations of these strategies.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Adyuvantes Inmunológicos/uso terapéutico , Animales , Antígenos de Neoplasias/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica , Predicción , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Inmunidad Innata , Inmunofenotipificación , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Interleucina-15/fisiología , Células Asesinas Naturales/trasplante , Ratones , Neoplasias/inmunología , Neoplasias/patología , Receptores de Células Asesinas Naturales/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas de Dominio T Box/fisiología , Escape del Tumor , Microambiente Tumoral/inmunología
4.
Eur J Immunol ; 53(6): e2250118, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37025016

RESUMEN

Growing interest surrounds adoptive cellular therapies utilizing Natural Killer (NK) cells, which can be obtained from various sources, including umbilical cord blood (UCB) and adult peripheral blood (APB). Understanding NK cell receptor expression and diversity in such cellular sources will guide future therapeutic designs. We used a 20-color flow cytometry panel to compare unstimulated and cytokine-activated UCB and APB NK cells. Our analysis showed that UCB NK cells express slightly higher levels of the immune checkpoints PD-1, TIGIT, and CD96 compared to their APB counterparts. Unsupervised hierarchical clustering and dimensionality reduction analyses revealed enrichment in CD56neg as well as mature NKp46neg and CD56+ CD16+ NK cell populations in UCB whereas CD57+ terminally differentiated NK cells with variable expression of KIRs and CD16 were found in APB. These populations were conserved following stimulation with IL-12, IL-15, and IL-18. Cytokine stimulation was associated with the downregulation of TIGIT and CD16 on multiple NK cell subsets in UCB and APB. Among UCB CD16- NK cell populations, TIGIT+ NK cells produced more IFN-γ than their TIGIT- counterparts. Our data demonstrate higher immune checkpoint expression on UCB NK cells compared to APB. However, the expression of TIGIT immune checkpoint is not indicative of NK cell exhaustion.


Asunto(s)
Sangre Fetal , Células Asesinas Naturales , Adulto , Humanos , Citocinas , Interleucina-12 , Citometría de Flujo , Antígeno CD56
6.
Immunol Cell Biol ; 99(1): 65-83, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32748462

RESUMEN

Type 2 innate lymphoid cells (ILC2s) are important producers of type 2 cytokines whose role in hematological cancers remains unclear. ILC2s are a heterogeneous population encompassing distinct subsets with different tissue localization and cytokine responsiveness. In this study, we investigated the role of bone marrow (BM) ILC2s and interleukin (IL)-33-stimulated ILC2s in multiple myeloma, a plasma cell malignancy that develops in the BM. We found that myeloma growth was associated with phenotypic and functional alterations of BM ILC2s, characterized by an increased expression of maturation markers and reduced cytokine response to IL-2/IL-33. We identified a population of KLRG1hi ILC2s that preferentially accumulated in the liver and spleen of Il2rg-/- Rag2-/- mice reconstituted with BM ILC2s. A similar population of KLRG1hi ILC2s was observed in the blood, liver and spleen of IL-33-treated wild-type mice. The presence of KLRG1hi ILC2s in ILC2-reconstituted Il2rg-/- Rag2-/- mice or in IL-33-treated wild-type mice was associated with increased eosinophil numbers but had no effect on myeloma progression. Interestingly, while decreased myeloma growth was observed following treatment of Rag-deficient mice with the type 1 cytokines IL-12 and IL-18, this protection was reversed when mice received a combined treatment of IL-33 together with IL-12 and IL-18. In summary, our data indicate that IL-33 treatment induces a population of circulating inflammatory KLRG1hi ILC2s and inhibits type 1 immunity against multiple myeloma. These results argue against therapeutic administration of IL-33 to myeloma patients.


Asunto(s)
Inmunidad Innata , Mieloma Múltiple , Animales , Citocinas , Humanos , Interleucina-33 , Lectinas Tipo C , Linfocitos , Ratones , Mieloma Múltiple/tratamiento farmacológico , Receptores Inmunológicos
7.
Blood ; 132(16): 1689-1694, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29986909

RESUMEN

Immune-based therapies hold promise for the treatment of multiple myeloma (MM), but so far, immune checkpoint blockade targeting programmed cell death protein 1 has not proven effective as single agent in this disease. T-cell immunoglobulin and ITIM domains (TIGIT) is another immune checkpoint receptor known to negatively regulate T-cell functions. In this study, we investigated the therapeutic potential of TIGIT blockade to unleash immune responses against MM. We observed that, in both mice and humans, MM progression was associated with high levels of TIGIT expression on CD8+ T cells. TIGIT+ CD8+ T cells from MM patients exhibited a dysfunctional phenotype characterized by decreased proliferation and inability to produce cytokines in response to anti-CD3/CD28/CD2 or myeloma antigen stimulation. Moreover, when challenged with Vk*MYC mouse MM cells, TIGIT-deficient mice showed decreased serum monoclonal immunoglobulin protein levels associated with reduced tumor burden and prolonged survival, indicating that TIGIT limits antimyeloma immune responses. Importantly, blocking TIGIT using monoclonal antibodies increased the effector function of MM patient CD8+ T cells and suppressed MM development. Altogether our data provide evidence for an immune-inhibitory role of TIGIT in MM and support the development of TIGIT-blocking strategies for the treatment of MM patients.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/inmunología , Mieloma Múltiple/prevención & control , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Células Cultivadas , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mieloma Múltiple/etiología , Mieloma Múltiple/patología , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/fisiología
8.
Blood ; 132(16): 1675-1688, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30154111

RESUMEN

Autologous stem cell transplantation (SCT) remains a standard of care for multiple myeloma (MM) patients and prolongs progression-free survival. A small cohort of patients achieve long-term control of disease, but the majority of patients ultimately relapse, and the mechanisms permitting disease progression remain unclear. In this study, we used a preclinical model of autologous SCT for myeloma where the disease either progressed (MM relapsed) or was controlled. In the bone marrow (BM), inhibitory receptor expression on CD8+ T cells correlated strongly with myeloma progression after transplant. In conjunction, the costimulatory/adhesion receptor CD226 (DNAM-1) was markedly downregulated. Interestingly, DNAM-1- CD8+ T cells in MM-relapsed mice had an exhausted phenotype, characterized by upregulation of multiple inhibitory receptors, including T-cell immunoglobulin and ITIM domains (TIGIT) and programmed cell death protein 1 (PD-1) with decreased T-bet and increased eomesodermin expression. Immune checkpoint blockade using monoclonal antibodies against PD-1 or TIGIT significantly prolonged myeloma control after SCT. Furthermore, CD8+ T cells from MM-relapsed mice exhibited high interleukin-10 (IL-10) secretion that was associated with increased TIGIT and PD-1 expression. However, while donor-derived IL-10 inhibited myeloma control post-SCT, this was independent of IL-10 secretion by or signaling to T cells. Instead, the donor myeloid compartment, including colony-stimulating factor 1 receptor-dependent macrophages and an IL-10-secreting dendritic cell population in the BM, promoted myeloma progression. Our findings highlight PD-1 or TIGIT blockade in conjunction with SCT as a potent combination therapy in the treatment of myeloma.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , Interleucina-10/fisiología , Mieloma Múltiple/prevención & control , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Animales , Antígenos de Diferenciación de Linfocitos T/genética , Células Cultivadas , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Ratones , Ratones Noqueados , Mieloma Múltiple/etiología , Mieloma Múltiple/patología , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/inmunología
9.
Adv Exp Med Biol ; 1273: 69-90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119876

RESUMEN

Natural killer cells are powerful effectors of innate immunity that constitute a first line of defense against cancer. NK cells express an array of germline-encoded receptors which allow them to eliminate transformed cells and spare normal, healthy cells. Owing to their ability to kill circulating tumor cells, NK cells play a major role in the protection against cancer metastases. There is also convincing evidence that NK cells protect against some hematological cancers such as acute myeloid leukemia. However, the importance of NK cells for the control of established solid tumors is rather uncertain. Several mechanisms impede NK cell-mediated elimination of solid tumors, starting with the incapacity of NK cells to infiltrate the core of the tumor. In addition, immune escape mechanisms are at play in both solid and hematological cancers. These include the immunoediting of tumor cells and aberrant chronic inflammation that renders NK cells ineffective. In this chapter, I review the phenotypic characteristics of NK cells within the tumor microenvironment. Furthermore, I describe the mechanisms by which NK cells contribute to antitumor immunity. Finally, I review the different immune-evasion factors that impair NK cell activity against cancer.


Asunto(s)
Células Asesinas Naturales/citología , Neoplasias/inmunología , Escape del Tumor , Microambiente Tumoral/inmunología , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología
10.
Mamm Genome ; 29(11-12): 777-789, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30178306

RESUMEN

Natural killer (NK) cells have long been recognized for their anti-cancer activity and are now included in the large family of innate lymphoid cells (ILCs). The discovery of new ILC subsets that, similarly to NK cells, are able to kill tumor cells encourages us to redefine NK cell role in anti-tumor immunity. Conventional NK cells circulate through the blood and screen the body for "stressed" cells. Therefore, NK cells are believed to play a key role in cancer immunosurveillance by the early elimination of cells undergoing malignant transformation. Tissue-resident ILCs might play a similar role since they are ideally located to detect the early signs of malignant transformation in their organ of residence. We are only beginning to appreciate the importance of the whole ILC family in cancer. Confusingly, these cells have been reported to both inhibit and fuel cancer progression and the factors regulating these dual functions remain unclear. Here, I review the recent advances in our understanding of cytotoxic and cytokine-producing helper ILC subsets in cancer.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Inmunidad Innata , Linfocitos/inmunología , Neoplasias/inmunología , Humanos , Células Asesinas Naturales/inmunología , Neoplasias/patología
11.
Curr Top Microbiol Immunol ; 395: 115-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26025472

RESUMEN

Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.


Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Animales , Citocinas/genética , Citocinas/inmunología , Humanos , Inmunidad Innata
12.
Cell Mol Life Sci ; 73(8): 1569-89, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26801219

RESUMEN

Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Médula Ósea/inmunología , Células de la Médula Ósea/inmunología , Humanos , Vigilancia Inmunológica/inmunología , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología
13.
Blood ; 120(1): 90-9, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22611152

RESUMEN

The physiologic role played by plasmacytoid dendritic cells (pDCs) in the induction of innate responses and inflammation in response to pathogen signaling is not well understood. Here, we describe a new mouse model lacking pDCs and establish that pDCs are essential for the in vivo induction of NK-cell activity in response to Toll-like receptor 9 (TLR9) triggering. Furthermore, we provide the first evidence that pDCs are critical for the systemic production of a wide variety of chemokines in response to TLR9 activation. Consequently, we observed a profound alteration in monocyte, macrophage, neutrophil, and NK-cell recruitment at the site of inflammation in the absence of pDCs in response to CpG-Dotap and stimulation by microbial pathogens, such as Leishmania major, Escherichia coli, and Mycobacterium bovis. This study, which is based on the development of a constitutively pDC-deficient mouse model, highlights the pivotal role played by pDCs in the induction of innate immune responses and inflammation after TLR9 triggering.


Asunto(s)
Células Dendríticas/inmunología , Infecciones/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/microbiología , Receptor Toll-Like 9/inmunología , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Movimiento Celular/inmunología , Quimiocinas/inmunología , Citocinas/inmunología , Proteínas de Unión al ADN/genética , Células Dendríticas/citología , Infecciones por Escherichia coli/inmunología , Inmunidad Innata/inmunología , Leishmania major/inmunología , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/citología , Monocitos/inmunología , Neutrófilos/citología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Receptor Toll-Like 9/metabolismo , Tuberculosis/inmunología
14.
Exp Hematol ; 130: 104134, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052261

RESUMEN

Immunodeficient mice bearing human immune systems, or "humanized" chimeric mice, are widely used in basic research, along with the preclinical stages of drug development. Nonobese diabetic-severe combined immunodeficiency (NOD-SCID) IL2Rγnull (NSG) mice expressing human stem cell factor, granulocyte-macrophage colony stimulating factor, and interleukin-3 (NSG-SGM3) support robust development of human myeloid cells and T cells but have reduced longevity due to the development of fatal hemophagocytic lymphohistiocytosis (HLH). Here, we describe an optimized protocol for development of human immune chimerism in NSG-SGM3 mice. We demonstrate that efficient human CD45+ reconstitution can be achieved and HLH delayed by engraftment of neonatal NSG-SGM3 with low numbers of human umbilical cord-derived CD34+ hematopoietic stem cells in the absence of preconditioning irradiation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Ratones , Humanos , Animales , Recién Nacido , Linfohistiocitosis Hemofagocítica/terapia , Ratones Endogámicos NOD , Ratones SCID , Células Madre Hematopoyéticas , Antígenos CD34 , Linfocitos T
15.
Clin Transl Immunology ; 13(3): e1501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525380

RESUMEN

Objectives: Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods: In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results: We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion: We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.

16.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34503073

RESUMEN

The discovery of immune checkpoints provided a breakthrough for cancer therapy. Immune checkpoints are inhibitory receptors that are up-regulated on chronically stimulated lymphocytes and have been shown to hinder immune responses to cancer. Monoclonal antibodies against the checkpoint molecules PD-1 and CTLA-4 have shown early clinical success against melanoma and are now approved to treat various cancers. Since then, the list of potential candidates for immune checkpoint blockade has dramatically increased. The current paradigm stipulates that immune checkpoint blockade therapy unleashes pre-existing T cell responses. However, there is accumulating evidence that some of these immune checkpoint molecules are also expressed on Natural Killer (NK) cells. In this review, we summarize our latest knowledge about targetable NK cell inhibitory receptors. We discuss the HLA-binding receptors KIRS and NKG2A, receptors binding to nectin and nectin-like molecules including TIGIT, CD96, and CD112R, and immune checkpoints commonly associated with T cells such as PD-1, TIM-3, and LAG-3. We also discuss newly discovered pathways such as IL-1R8 and often overlooked receptors such as CD161 and Siglecs. We detail how these inhibitory receptors might regulate NK cell responses to cancer, and, where relevant, we discuss their implications for therapeutic intervention.

17.
Cancers (Basel) ; 11(6)2019 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-31234526

RESUMEN

Leukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity. This approach has demonstrated safety but limited clinical success until recently, as DC vaccination faces several barriers in both solid and hematological malignancies. Importantly, vaccine-mediated stimulation of protective immune responses is hindered by the aberrant production of immunosuppressive factors by cancer cells which impede both DC and T cell function. Leukemias present the additional challenge of severely disrupted hematopoiesis owing to both cytogenic defects in hematopoietic progenitors and an abnormal hematopoietic stem cell niche in the bone marrow; these factors accentuate systemic immunosuppression and DC malfunction. Despite these obstacles, several recent clinical trials have caused great excitement by extending survival in Acute Myeloid Leukemia (AML) patients through DC vaccination. Here, we review the phenotype and functional capacity of DCs in leukemia and approaches to harness DCs in leukemia patients. We describe the recent clinical successes in AML and detail the multiple new strategies that might enhance prognosis in AML and other leukemias.

18.
Blood Adv ; 3(11): 1681-1694, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31167820

RESUMEN

Natural killer (NK) cells are a heterogeneous population of innate lymphocytes whose potent anticancer properties make them ideal candidates for cellular therapeutic application. However, our lack of understanding of the role of NK cell diversity in antitumor responses has hindered advances in this area. In this study, we describe a new CD56dim NK cell subset characterized by the lack of expression of DNAX accessory molecule-1 (DNAM-1). Compared with CD56bright and CD56dimDNAM-1pos NK cell subsets, CD56dimDNAM-1neg NK cells displayed reduced motility, poor proliferation, lower production of interferon-γ, and limited killing capacities. Soluble factors secreted by CD56dimDNAM-1neg NK cells impaired CD56dimDNAM-1pos NK cell-mediated killing, indicating a potential inhibitory role for the CD56dimDNAM-1neg NK cell subset. Transcriptome analysis revealed that CD56dimDNAM-1neg NK cells constitute a new mature NK cell subset with a specific gene signature. Upon in vitro cytokine stimulation, CD56dimDNAM-1neg NK cells were found to differentiate from CD56dimDNAM-1pos NK cells. Finally, we report a dysregulation of NK cell subsets in the blood of patients diagnosed with Hodgkin lymphoma and diffuse large B-cell lymphoma, characterized by decreased CD56dimDNAM-1pos/CD56dimDNAM-1neg NK cell ratios and reduced cytotoxic activity of CD56dimDNAM-1pos NK cells. Altogether, our data offer a better understanding of human peripheral blood NK cell populations and have important clinical implications for the design of NK cell-targeting therapies.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Antígeno CD56/inmunología , Diferenciación Celular/inmunología , Enfermedad de Hodgkin/inmunología , Células Asesinas Naturales/inmunología , Linfoma de Células B Grandes Difuso/inmunología , Proteínas de Neoplasias/inmunología , Enfermedad de Hodgkin/patología , Humanos , Células Asesinas Naturales/patología , Linfoma de Células B Grandes Difuso/patología
19.
J Clin Invest ; 129(1): 106-121, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30300141

RESUMEN

Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma-bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell-dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell-dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.


Asunto(s)
Trasplante de Médula Ósea , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular , Memoria Inmunológica , Mieloma Múltiple/inmunología , Neoplasias Experimentales/inmunología , Animales , Linfocitos T CD8-positivos/patología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Ratones , Ratones Noqueados , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/terapia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/inmunología , Trasplante Homólogo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
20.
JCI Insight ; 52019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31194697

RESUMEN

Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge. The quality of CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells over MM cells (CD8/MM) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg-depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Altogether, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.


Asunto(s)
Ligando 4-1BB/metabolismo , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Inmunoterapia/métodos , Mieloma Múltiple/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/uso terapéutico , Antígenos de Neoplasias/inmunología , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mieloma Múltiple/patología , Linfocitos T Reguladores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA