Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Transplant ; 3: 1378378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993758

RESUMEN

Liver transplantation is the only treatment for patients with liver failure. As demand for liver transplantation grows, it remains a challenge to predict the short- and long-term survival of the liver graft. Recently, artificial intelligence models have been used to evaluate the short- and long-term survival of the liver transplant. To make the models more accurate, suitable liver transplantation characteristics must be used as input to train them. In this narrative review, we reviewed studies concerning liver transplantations published in the PubMed, Web of Science, and Cochrane databases between 2017 and 2022. We picked out 17 studies using our selection criteria and analyzed them, evaluating which medical characteristics were used as input for creation of artificial intelligence models. In eight studies, models estimating only short-term liver graft survival were created, while in five of the studies, models for the prediction of only long-term liver graft survival were built. In four of the studies, artificial intelligence algorithms evaluating both the short- and long-term liver graft survival were created. Medical characteristics that were used as input in reviewed studies and had the biggest impact on the accuracy of the model were the recipient's age, recipient's body mass index, creatinine levels in the recipient's serum, recipient's international normalized ratio, diabetes mellitus, and recipient's model of end-stage liver disease score. To conclude, in order to define important liver transplantation characteristics that could be used as an input for artificial intelligence algorithms when predicting liver graft survival, more models need to be created and analyzed, in order to fully support the results of this review.

2.
Cancers (Basel) ; 16(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38201532

RESUMEN

Despite advances in diagnostic and treatment technologies, predicting outcomes of patients with hepatocellular carcinoma (HCC) remains a challenge. Prognostic models are further obscured by the variable impact of the tumor properties and the remaining liver parenchyma, often affected by cirrhosis or non-alcoholic fatty liver disease that tend to precede HCC. This study investigated the prognostic value of reticulin and collagen microarchitecture in liver resection samples. We analyzed 105 scanned tissue sections that were stained using a Gordon and Sweet's silver impregnation protocol combined with Picric Acid-Sirius Red. A convolutional neural network was utilized to segment the red-staining collagen and black linear reticulin strands, generating a detailed map of the fiber structure within the HCC and adjacent liver tissue. Subsequent hexagonal grid subsampling coupled with automated epithelial edge detection and computational fiber morphometry provided the foundation for region-specific tissue analysis. Two penalized Cox regression models using LASSO achieved a concordance index (C-index) greater than 0.7. These models incorporated variables such as patient age, tumor multifocality, and fiber-derived features from the epithelial edge in both the tumor and liver compartments. The prognostic value at the tumor edge was derived from the reticulin structure, while collagen characteristics were significant at the epithelial edge of peritumoral liver. The prognostic performance of these models was superior to models solely reliant on conventional clinicopathologic parameters, highlighting the utility of AI-extracted microarchitectural features for the management of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA