Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6301, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060252

RESUMEN

Perovskite oxides show promise for the oxygen evolution reaction. However, numerical chemical compositions remain unexplored due to inefficient trial-and-error methods for material discovery. Here, we develop a transfer learning paradigm incorporating a pre-trained model, ensemble learning, and active learning, enabling the prediction of undiscovered perovskite oxides with enhanced generalizability for this reaction. Screening 16,050 compositions leads to the identification and synthesis of 36 new perovskite oxides, including 13 pure perovskite structures. Pr0.1Sr0.9Co0.5Fe0.5O3 and Pr0.1Sr0.9Co0.5Fe0.3Mn0.2O3 exhibit low overpotentials of 327 mV and 315 mV at 10 mA cm-2, respectively. Electrochemical measurements reveal coexistence of absorbate evolution and lattice oxygen mechanisms for O-O coupling in both materials. Pr0.1Sr0.9Co0.5Fe0.3Mn0.2O3 demonstrates enhanced OH- affinity compared to Pr0.1Sr0.9Co0.5Fe0.5O3, with the emergence of oxo-bridged Mn-Co conjugate facilitating charge redistribution and dynamic reversibility of Olattice/VO, thereby slowing down Co dissolution. This work paves the way for accelerated discovery and development of high-performance perovskite oxide electrocatalysts for this reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA