Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602735

RESUMEN

Developmental changes that occur before birth are thought to be associated with the development of autism spectrum disorders. Identifying anatomical predictors of early brain development may contribute to our understanding of the neurobiology of autism spectrum disorders and allow for earlier and more effective identification and treatment of autism spectrum disorders. In this study, we used retrospective clinical brain magnetic resonance imaging data from fetuses who were diagnosed with autism spectrum disorders later in life (prospective autism spectrum disorders) in order to identify the earliest magnetic resonance imaging-based regional volumetric biomarkers. Our results showed that magnetic resonance imaging-based autism spectrum disorder biomarkers can be found as early as in the fetal period and suggested that the increased volume of the insular cortex may be the most promising magnetic resonance imaging-based fetal biomarker for the future emergence of autism spectrum disorders, along with some additional, potentially useful changes in regional volumes and hemispheric asymmetries.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Estudios Prospectivos , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Biomarcadores
2.
Cereb Cortex ; 31(11): 4916-4932, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34289021

RESUMEN

We aimed to identify symptom-related neuroimaging biomarkers for patients with dysgenesis of the corpus callosum (dCC) by summarizing neurological symptoms reported in clinical evaluations and correlating them with retrospectively collected structural/diffusion brain magnetic resonance imaging (MRI) measures from 39 patients/controls (mean age 8.08 ± 3.98). Most symptoms/disorders studied were associated with CC abnormalities. Total brain (TB) volume was related to language, cognition, muscle tone, and metabolic/endocrine abnormalities. Although white matter (WM) volume was not related to symptoms studied, gray matter (GM) volume was related to cognitive, behavioral, and metabolic/endocrine disorders. Right hemisphere (RH) cortical thickness (CT) was linked to language abnormalities, while left hemisphere (LH) CT was linked to epilepsy. While RH gyrification index (GI) was not related to any symptoms studied, LH GI was uniquely related to cognitive disorders. Between patients and controls, GM volume and LH/RH CT were significantly greater in dCC patients, while WM volume and LH/RH GI were significantly greater in controls. TB volume and diffusion indices for tissue microstructures did not show differences between the groups. In summary, our brain MRI-based measures successfully revealed differential links to many symptoms. Specifically, LH GI abnormality can be a predictor for dCC patients, which is uniquely associated with the patients' symptom. In addition, patients with CC abnormalities had normal TB volume and overall tissue microstructures, with potentially deteriorated mechanisms to expand/fold the brain, indicated by GI.


Asunto(s)
Cuerpo Calloso , Sustancia Blanca , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Preescolar , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
3.
BMC Genomics ; 18(1): 744, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934927

RESUMEN

BACKGROUND: The HD-Zip family has a diversity of functions during plant development. In this study, we identify 33 HD-Zip transcription factors in grape and detect their expressions in ovules and somatic embryos, as well as in various vegetative organs. RESULTS: A genome-wide survey for HD-Zip transcription factors in Vitis was conducted based on the 12 X grape genome (V. vinifera L.). A total of 33 members were identified and classified into four subfamilies (I-IV) based on phylogeny analysis with Arabidopsis, rice and maize. VvHDZs in the same subfamily have similar protein motifs and intron/exon structures. An evaluation of duplication events suggests several HD-Zip genes arose before the divergence of the grape and Arabidopsis lineages. The 33 members of HD-Zip were differentially expressed in ovules of the stenospermic grape, Thompson Seedless and of the seeded grape, Pinot noir. Most have higher expressions during ovule abortion in Thompson Seedless. In addition, transcripts of the HD-Zip family were also detected in somatic embryogenesis of Thompson Seedless and in different vegetative organs of Thompson Seedless at varying levels. Additionally, VvHDZ28 is located in the nucleus and had transcriptional activity consistent with the typical features of the HD-Zip family. Our results provide a foundation for future grape HD-Zip gene function research. CONCLUSIONS: The identification and expression profiles of the HD-Zip transcription factors in grape, reveal their diverse roles during ovule abortion and organ development. Our results lay a foundation for functional analysis of grape HDZ genes.


Asunto(s)
Evolución Molecular , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Semillas/genética , Vitis/genética , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Secuencia Conservada , Anotación de Secuencia Molecular , Especificidad de Órganos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Transcripción Genética , Vitis/citología , Vitis/crecimiento & desarrollo
4.
J Agric Food Chem ; 72(30): 16877-16888, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39038232

RESUMEN

Esterases are crucial for aryloxyphenoxypropionate herbicide (AOPP) biodegradation. However, the underlying molecular mechanisms of AOPP biodegradation by esterases are poorly understood. In the current work, Corynebacterium sp. Z-1 was isolated and found to degrade multiple AOPPs, including quizalofop-p-ethyl (QPE), haloxyfop-p-methyl (HPM), fenoxaprop-p-ethyl (FPE), cyhalofop-butyl (CYB), and clodinafop-propargyl (CFP). A novel esterase, QfeH, which catalyzes the cleavage of ester bonds in AOPPs to form AOPP acids, was identified from strain Z-1. The catalytic activities of QfeH toward AOPPs decreased in the following order: CFP > FPE > CYB > QPE > HPM. Molecular docking, computational analyses, and site-directed mutagenesis indicated the catalytic mechanisms of QfeH-mediated degradation of different AOPPs. Notably, the key residue S159 is essential for the activity of QfeH. Moreover, V222Y, T227M, T227A, A271R, and M275K mutants, exhibiting 2.9-5.0 times greater activity than QfeH, were constructed. This study facilitates the mechanistic understanding of AOPPs bioremediation by esterases.


Asunto(s)
Biodegradación Ambiental , Corynebacterium , Esterasas , Herbicidas , Herbicidas/metabolismo , Herbicidas/química , Esterasas/metabolismo , Esterasas/genética , Esterasas/química , Corynebacterium/metabolismo , Corynebacterium/genética , Corynebacterium/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Propionatos/metabolismo
5.
Oncol Rep ; 38(4): 2572-2580, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28849232

RESUMEN

MicroRNAs (miRNAs) play critical roles in the development and progression of various cancers, including non-small-cell lung cancer (NSCLC). Studies have suggested that miR-330-5p is involved in the progression of several cancers. However, the role of miR-330-5p in NSCLC remains unclear. We investigated the effect on and mechanism of miR-330-5p in the progression of NSCLC. We found that miR-330-5p was significantly downregulated in NSCLC tissues and cell lines as detected by real-time quantitative polymerase chain reaction (RT-qPCR). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), bromodeoxyuridine (BrdU), colony formation and cell cycle assays showed that overexpression of miR-330-5p markedly inhibited cell growth. Annexin V-FITC/PI and caspase-3 activity assays showed that overexpression of miR-330-5p significantly promoted cell apoptosis of NSCLC cells. Bioinformatics analysis and dual-luciferase reporter assays confirmed NIN/RPN12 binding protein 1 (NOB1) as a target gene of miR-330-5p. RT-qPCR and Western blot analysis showed that overexpression of miR-330-5p inhibited the expression of NOB1 as well as cyclin D1 and cyclin-dependent kinase 4 in NSCLC cells. Moreover, overexpression of NOB1 markedly reversed the miR­330-5p-mediated inhibitory effect on NSCLC cell growth. Correlation analysis showed that miR­330-5p expression was inversely correlated with NOB1 mRNA expression in NSCLC tissues. Taken together, our results indicate that miR-330-5p inhibits NSCLC cell growth through downregulation of NOB1 expression. Our study suggests that miR-330-5p may serve as a potential therapeutic target for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , MicroARNs/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Ciclina D1/genética , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino
6.
Hortic Res ; 4: 17033, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785414

RESUMEN

The downy mildew disease in grapevines is caused by Plasmopara viticola. This disease poses a serious threat wherever viticulture is practiced. Wild Vitis species showing resistance to P. viticola offer a promising pathway to develop new grapevine cultivars resistant to P. viticola which will allow reduced use of environmentally unfriendly fungicides. Here, transmission and scanning microscopy was used to compare the resistance responses to downy mildew of three resistant genotypes of V. davidii var. cyanocarpa, V. piasesezkii and V. pseudoreticulata and the suceptible V. vinifera cultivar 'Pinot Noir'. Following inoculation with sporangia of P. viticola isolate 'YL' on V. vinifera cv. 'Pinot Noir', the infection was characterized by a rapid spread of intercellular hyphae, a high frequency of haustorium formation within the host's mesophyll cells, the production of sporangia and by the absence of host-cell necrosis. In contrast zoospores were collapsed in the resistant V. pseudoreticulata 'Baihe-35-1', or secretions appeared arround stomata at the beginning of the infection period in V. davidii var. cyanocarpa 'Langao-5' and V. piasezkii 'Liuba-8'. The main characteristics of the resistance responses were the rapid depositions of callose and the appearance of empty hyphae and the plasmolysis of penetrated tissue. Moreover, collapsed haustoria were observed in V. davidii var. cyanocarpa 'Langao-5' at 5 days post inoculation (dpi) and in V. piasezkii 'Liuba-8' at 7 dpi. Lastly, necrosis extended beyond the zone of restricted colonization in all three resistant genotypes. Sporangia were absent in V. piasezkii 'Liuba-8' and greatly decreased in V. davidii var. cyanocarpa 'Langao-5' and in V. pseudoreticulata 'Baihe-35-1' compared with in V. vinifera cv. 'Pinot Noir'. Overall, these results provide insights into the cellular biological basis of the incompatible interactions between the pathogen and the host. They indicate a number of several resistant Chinese wild species that could be used in developing new cultivars having good levels of downy mildew resistance.

7.
Oncol Res ; 25(6): 887-895, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28244855

RESUMEN

DEAD (Asp-Glu-Ala-Asp) box protein 5 (DDX5), a prototypical member of the DEAD/H-box protein family, has been involved in several human malignancies. However, the expression and biological role of DDX5 in esophageal cancer (EC) remain largely unknown. In this study, we examined the role of DDX5 in regulating EC cell proliferation and tumorigenesis and explored its possible molecular mechanism. We found that DDX5 was overexpressed in human EC cell lines. In addition, knockdown of DDX5 significantly inhibited the proliferation of EC cells in vitro and the growth of EC xenografts in vivo. Knockdown of DDX5 also suppressed the migration/invasion and epithelial-to-mesenchymal transition (EMT) phenotype in EC cells. Furthermore, we observed that knockdown of DDX5 inhibited the expression of ß-catenin, c-Myc, and cyclin D1 in EC cells. In conclusion, our findings provide the first evidence that siRNA-DDX5 inhibited the proliferation and invasion of EC cells through suppressing the Wnt/ß-catenin signaling pathway. Therefore, DDX5 may be a novel potential therapeutic target for the prevention and treatment of EC.


Asunto(s)
ARN Helicasas DEAD-box/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , ARN Helicasas DEAD-box/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones Endogámicos BALB C , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA