Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 28(R1): R119-R131, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31384936

RESUMEN

Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and ß- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades por Almacenamiento Lisosomal/complicaciones , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/terapia , Animales , Terapia Combinada , Manejo de la Enfermedad , Terapia de Reemplazo Enzimático , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Resultado del Tratamiento
2.
J Inherit Metab Dis ; 43(3): 618-634, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31707730

RESUMEN

2-Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) is an experimental therapy for Niemann-Pick disease type C (NPC) that reduced neuronal cholesterol and ganglioside storage, reduced Purkinje cell death, and increased lifespan in npc1-/- mice and NPC1 cats. In this study, tissue distribution was investigated in normal cats that received a single 120-mg dose of [14 C]-HP-ß-CD (approximately 200 µCi/cat) via the cerebellomedullary cistern (CBMC) and lumbar cistern. One cat was euthanized at each of various time points up to 24 hours postdose for subsequent processing and quantitative whole-body autoradiographic analysis. HP-ß-CD-derived radioactivity absorbed from the CBMC was widely distributed to cat tissues; most tissues were observed to have reached their highest concentration at 1 hour postdose. HP-ß-CD-derived radioactivity penetrated into the deeper parts of the central nervous system with the highest concentration at 4 hours (403 µg Eq/g or 0.28 mM) and remained high (49.7 µg Eq/g or 0.03 mM) at 24 hours. The relatively long half-life (11-30 hours) in cerebral ventricles and the subarachnoid space surrounding the brain and spinal cord might contribute to the efficacy of HP-ß-CD in NPC1 cats. Other tissues with high concentrations of radioactivity were nasal turbinates, pituitary gland, and urinary bladder, while relatively low concentrations were observed in blood and bile.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/farmacología , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Proteína Niemann-Pick C1/genética , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Animales , Gatos , Colesterol/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Enfermedad de Niemann-Pick Tipo C/metabolismo
3.
Connect Tissue Res ; 58(6): 542-552, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27937051

RESUMEN

AIMS: Our goals in the current experiments were to determine if (a) upregulation of Wnt signaling would induce osteoarthritis changes in stable stifle joints and (b) if downregulation of Wnt signaling in destabilized joints would influence the progression of OA. METHODS: At 37 weeks of age, rats were injected in the stifle joint with a recombinant adeno-associated viral vector containing the Wnt-inhibitor Dkk-1 or a Wnt10b transgene. At 40 weeks of age, rats underwent surgical destabilization of the joint. At 50 weeks of age, stifle joints were submitted for micro-computed tomography and histopathological analysis. RESULTS: Injection of either Wnt10b or Dkk-1 transgenes in stable joints improved bone architectural parameters, but worsened soft tissue integrity. Osteophytosis was decreased by Dkk-1, but unchanged by Wnt10b. Destabilization negatively influenced bone architecture, increased osteophytosis, and decreased soft tissue integrity. Dkk-1 exacerbated the negative effects of destabilization, whereas Wnt10b had little effect on these parameters. Osteophytosis was improved, whereas soft tissue integrity was worsened by both transgenes in destabilized joints. CONCLUSIONS: The Wnt-inhibitor Dkk-1 does not appear to completely inhibit the effects of Wnt signaling on bone remodeling. In vivo upregulation of Wnt10b and its inhibitor, Dkk-1, can produce both parallel or contrasting phenotypic responses depending on the specific parameter measured and the fidelity of the examined joint. These observations elucidate different roles for Wnt signaling in stable versus destabilized joints and may help to explain the conflicting results previously reported for the role of Dkk-1 in joint disease.


Asunto(s)
Terapia Genética , Péptidos y Proteínas de Señalización Intercelular/genética , Articulación de la Rodilla/patología , Osteoartritis de la Rodilla/terapia , Proteínas Proto-Oncogénicas/genética , Proteínas Wnt/genética , Animales , Remodelación Ósea/genética , Hueso Esponjoso/citología , Cartílago Articular/patología , Condrocitos/patología , Modelos Animales de Enfermedad , Masculino , Osteoartritis de la Rodilla/genética , Ratas Sprague-Dawley
4.
Mol Ther ; 24(2): 206-216, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26447927

RESUMEN

Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in ß-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.


Asunto(s)
Enfermedades del Sistema Nervioso Central/terapia , Terapia Genética/métodos , Glucuronidasa/genética , Mucopolisacaridosis VII/terapia , Animales , Animales Recién Nacidos , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Vectores Genéticos/administración & dosificación , Glucuronidasa/líquido cefalorraquídeo , Glicosaminoglicanos/metabolismo , Inyecciones Intravenosas , Inyecciones Espinales , Masculino , Mucopolisacaridosis VII/complicaciones , Mucopolisacaridosis VII/genética , Mucopolisacaridosis VII/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(41): 14894-9, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267637

RESUMEN

Patients with mucopolysaccharidosis type I (MPS I), a genetic deficiency of the lysosomal enzyme α-l-iduronidase (IDUA), exhibit accumulation of glycosaminoglycans in tissues, with resulting diverse clinical manifestations including neurological, ocular, skeletal, and cardiac disease. MPS I is currently treated with hematopoietic stem cell transplantation or weekly enzyme infusions, but these therapies have significant drawbacks for patient safety and quality of life and do not effectively address some of the most critical clinical sequelae, such as life-threatening cardiac valve involvement. Using the naturally occurring feline model of MPS I, we tested liver-directed gene therapy as a means of achieving long-term systemic IDUA reconstitution. We treated four MPS I cats at 3-5 mo of age with an adeno-associated virus serotype 8 vector expressing feline IDUA from a liver-specific promoter. We observed sustained serum enzyme activity for 6 mo at ∼ 30% of normal levels in one animal, and in excess of normal levels in three animals. Remarkably, treated animals not only demonstrated reductions in glycosaminoglycan storage in most tissues, but most also exhibited complete resolution of aortic valve lesions, an effect that has not been previously observed in this animal model or in MPS I patients treated with current therapies. These data point to clinically meaningful benefits of the robust enzyme expression achieved with hepatic gene transfer that extend beyond the economic and quality of life advantages over lifelong enzyme infusions.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Terapia Genética , Hígado/metabolismo , Mucopolisacaridosis I/terapia , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Enfermedades Cardiovasculares/patología , Gatos , Dependovirus/genética , Femenino , Vectores Genéticos/metabolismo , Glicosaminoglicanos/metabolismo , Cofactor II de Heparina/metabolismo , Iduronidasa/sangre , Iduronidasa/genética , Iduronidasa/uso terapéutico , Hígado/patología , Masculino , Datos de Secuencia Molecular , Mucopolisacaridosis I/sangre , Mucopolisacaridosis I/patología , Miocardio/metabolismo , Miocardio/patología , Trombina/metabolismo , Distribución Tisular , Transducción Genética
6.
Yale J Biol Med ; 90(3): 417-431, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28955181

RESUMEN

For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.


Asunto(s)
Enfermedades Genéticas Congénitas , Enfermedades Raras , Animales , Gatos , Modelos Animales de Enfermedad , Perros , Humanos , Ovinos , Porcinos
7.
J Pharmacol Exp Ther ; 358(2): 254-61, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27307499

RESUMEN

Niemann-Pick type C (NPC) 1 disease is a rare, inherited, neurodegenerative disease. Clear evidence of the therapeutic efficacy of 2-hydroxypropyl-ß-cyclodextrin (HPßCD) in animal models resulted in the initiation of a phase I/IIa clinical trial in 2013 and a phase IIb/III trial in 2015. With clinical trials ongoing, validation of a biomarker to track disease progression and serve as a supporting outcome measure of therapeutic efficacy has become compulsory. In this study, we evaluated calcium-binding protein calbindin D-28K (calbindin) concentrations in the cerebrospinal fluid (CSF) as a biomarker of NPC1 disease. In the naturally occurring feline model, CSF calbindin was significantly elevated at 3 weeks of age, prior to the onset of cerebellar dysfunction, and steadily increased to >10-fold over normal at end-stage disease. Biweekly intrathecal administration of HPßCD initiated prior to the onset of neurologic dysfunction completely normalized CSF calbindin in NPC1 cats at all time points analyzed when followed up to 78 weeks of age. Initiation of HPßCD after the onset of clinical signs (16 weeks of age) resulted in a delayed reduction of calbindin levels in the CSF. Evaluation of CSF from patients with NPC1 revealed that calbindin concentrations were significantly elevated compared with CSF samples collected from unaffected patients. Off-label treatment of patients with NPC1 with miglustat, an inhibitor of glycosphingolipid biosynthesis, significantly decreased CSF calbindin compared with pretreatment concentrations. These data suggest that the CSF calbindin concentration is a sensitive biomarker of NPC1 disease that could be instrumental as an outcome measure of therapeutic efficacy in ongoing clinical trials.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Calbindina 1/líquido cefalorraquídeo , Progresión de la Enfermedad , Enfermedad de Niemann-Pick Tipo C/líquido cefalorraquídeo , 2-Hidroxipropil-beta-Ciclodextrina , Adolescente , Adulto , Animales , Gatos , Niño , Preescolar , Femenino , Glicoesfingolípidos/biosíntesis , Humanos , Lactante , Masculino , Persona de Mediana Edad , Enfermedad de Niemann-Pick Tipo C/metabolismo , Factores de Tiempo , Adulto Joven , beta-Ciclodextrinas/farmacología
8.
J Virol ; 89(5): 2603-14, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25520501

RESUMEN

UNLABELLED: Bovine parvovirus (BPV), the causative agent of respiratory and gastrointestinal disease in cows, is the type member of the Bocaparvovirus genus of the Parvoviridae family. Toward efforts to obtain a template for the development of vaccines and small-molecule inhibitors for this pathogen, the structure of the BPV capsid, assembled from the major capsid viral protein 2 (VP2), was determined using X-ray crystallography as well as cryo-electron microscopy and three-dimensional image reconstruction (cryo-reconstruction) to 3.2- and 8.8-Å resolutions, respectively. The VP2 region ordered in the crystal structure, from residues 39 to 536, conserves the parvoviral eight-stranded jellyroll motif and an αA helix. The BPV capsid displays common parvovirus features: a channel at and depressions surrounding the 5-fold axes and protrusions surrounding the 3-fold axes. However, rather than a depression centered at the 2-fold axes, a raised surface loop divides this feature in BPV. Additional observed density in the capsid interior in the cryo-reconstructed map, compared to the crystal structure, is interpreted as 10 additional N-terminal residues, residues 29 to 38, that radially extend the channel under the 5-fold axis, as observed for human bocavirus 1 (HBoV1). Surface loops of various lengths and conformations extend from the core jellyroll motif of VP2. These loops confer the unique surface topology of the BPV capsid, making it strikingly different from HBoV1 as well as the type members of other Parvovirinae genera for which structures have been determined. For the type members, regions structurally analogous to those decorating the BPV capsid surface serve as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity. IMPORTANCE: Bovine parvovirus (BPV), identified in the 1960s in diarrheic calves, is the type member of the Bocaparvovirus genus of the nonenveloped, single-stranded DNA (ssDNA) Parvoviridae family. The recent isolation of human bocaparvoviruses from children with severe respiratory and gastrointestinal infections has generated interest in understanding the life cycle and pathogenesis of these emerging viruses. We have determined the high-resolution structure of the BPV capsid assembled from its predominant capsid protein VP2, known to be involved in a myriad of functions during host cell entry, pathogenesis, and antigenicity for other members of the Parvovirinae. Our results show the conservation of the core secondary structural elements and the location of the N-terminal residues for the known bocaparvovirus capsid structures. However, surface loops with high variability in sequence and conformation give BPV a unique capsid surface topology. Similar analogous regions in other Parvovirinae type members are important as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity.


Asunto(s)
Bocavirus/química , Bocavirus/ultraestructura , Cápside/química , Cápside/ultraestructura , Animales , Bovinos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Imagenología Tridimensional
9.
J Virol ; 89(3): 1794-808, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410874

RESUMEN

UNLABELLED: The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. IMPORTANCE: The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that report therapeutic efficacy. However, a large percentage of the population has preexisting AAV capsid antibodies and therefore must be excluded from clinical trials or vector readministration. This report represents our continuing efforts to understand the antigenic structure of the AAVs, specifically, to obtain a picture of "polyclonal" reactivity as is the situation in humans. It describes the structures of four AAV-antibody complexes determined by cryo-electron microscopy and image reconstruction, increasing the number of mapped epitopes to four and three, respectively, for AAV1 and AAV5, two vectors currently in clinical trials. The results presented provide information essential for generating antigenic escape vectors to overcome a critical challenge remaining in the optimization of this highly promising vector delivery system.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dependovirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Microscopía por Crioelectrón , Mapeo Epitopo , Epítopos/inmunología , Humanos , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares/ultraestructura , Modelos Moleculares , Unión Proteica , Serogrupo
10.
Mol Ther ; 23(8): 1298-1307, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26022732

RESUMEN

The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Iduronidasa/genética , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/terapia , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Perros , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos , Células HEK293 , Humanos , Iduronidasa/deficiencia , Macaca mulatta , Transgenes
11.
Mol Ther ; 22(12): 2018-2027, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25027660

RESUMEN

Enzyme replacement therapy has revolutionized the treatment of the somatic manifestations of lysosomal storage diseases (LSD), although it has been ineffective in treating central nervous system (CNS) manifestations of these disorders. The development of neurotrophic vectors based on novel serotypes of adeno-associated viruses (AAV) such as AAV9 provides a potential platform for stable and efficient delivery of enzymes to the CNS. We evaluated the safety and efficacy of intrathecal delivery of AAV9 expressing α-l-iduronidase (IDUA) in a previously described feline model of mucopolysaccharidosis I (MPS I). A neurological phenotype has not been defined in these animals, so our analysis focused on the biochemical and histological CNS abnormalities characteristic of MPS I. Five MPS I cats were dosed with AAV9 vector at 4-7 months of age and followed for 6 months. Treated animals demonstrated virtually complete correction of biochemical and histological manifestations of the disease throughout the CNS. There was a range of antibody responses against IDUA in this cohort which reduced detectable enzyme without substantially reducing efficacy; there was no evidence of toxicity. This first demonstration of the efficacy of intrathecal gene therapy in a large animal model of a LSD should pave the way for translation into the clinic.


Asunto(s)
Gatos , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Terapia Genética/métodos , Iduronidasa/sangre , Iduronidasa/líquido cefalorraquídeo , Mucopolisacaridosis I/terapia , Animales , Dependovirus/enzimología , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Inyecciones Espinales , Mucopolisacaridosis I/enzimología , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Especificidad de Órganos
12.
J Virol ; 87(20): 11187-99, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926356

RESUMEN

The adeno-associated viruses (AAVs) display differential cell binding, transduction, and antigenic characteristics specified by their capsid viral protein (VP) composition. Toward structure-function annotation, the crystal structure of AAV5, one of the most sequence diverse AAV serotypes, was determined to 3.45-Å resolution. The AAV5 VP and capsid conserve topological features previously described for other AAVs but uniquely differ in the surface-exposed HI loop between ßH and ßI of the core ß-barrel motif and have pronounced conformational differences in two of the AAV surface variable regions (VRs), VR-IV and VR-VII. The HI loop is structurally conserved in other AAVs despite amino acid differences but is smaller in AAV5 due to an amino acid deletion. This HI loop is adjacent to VR-VII, which is largest in AAV5. The VR-IV, which forms the larger outermost finger-like loop contributing to the protrusions surrounding the icosahedral 3-fold axes of the AAVs, is shorter in AAV5, creating a smoother capsid surface topology. The HI loop plays a role in AAV capsid assembly and genome packaging, and VR-IV and VR-VII are associated with transduction and antigenic differences, respectively, between the AAVs. A comparison of interior capsid surface charge and volume of AAV5 to AAV2 and AAV4 showed a higher propensity of acidic residues but similar volumes, consistent with comparable DNA packaging capacities. This structure provided a three-dimensional (3D) template for functional annotation of the AAV5 capsid with respect to regions that confer assembly efficiency, dictate cellular transduction phenotypes, and control antigenicity.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Dependovirus/química , Dependovirus/ultraestructura , Cristalografía por Rayos X , Electroquímica , Modelos Moleculares , Conformación Proteica
13.
J Virol ; 87(17): 9473-85, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23720715

RESUMEN

Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8(+) T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33.


Asunto(s)
Dependovirus/inmunología , Macaca mulatta/virología , Linfocitos T/inmunología , Linfocitos T/virología , Secuencia de Aminoácidos , Animales , Cápside/inmunología , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Dependovirus/clasificación , Dependovirus/genética , Mapeo Epitopo , Hibridación Genética , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Serotipificación
14.
J Virol ; 87(16): 9111-24, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760240

RESUMEN

Interactions between viruses and the host antibody immune response are critical in the development and control of disease, and antibodies are also known to interfere with the efficacy of viral vector-based gene delivery. The adeno-associated viruses (AAVs) being developed as vectors for corrective human gene delivery have shown promise in clinical trials, but preexisting antibodies are detrimental to successful outcomes. However, the antigenic epitopes on AAV capsids remain poorly characterized. Cryo-electron microscopy and three-dimensional image reconstruction were used to define the locations of epitopes to which monoclonal fragment antibodies (Fabs) against AAV1, AAV2, AAV5, and AAV6 bind. Pseudoatomic modeling showed that, in each serotype, Fabs bound to a limited number of sites near the protrusions surrounding the 3-fold axes of the T=1 icosahedral capsids. For the closely related AAV1 and AAV6, a common Fab exhibited substoichiometric binding, with one Fab bound, on average, between two of the three protrusions as a consequence of steric crowding. The other AAV Fabs saturated the capsid and bound to the walls of all 60 protrusions, with the footprint for the AAV5 antibody extending toward the 5-fold axis. The angle of incidence for each bound Fab on the AAVs varied and resulted in significant differences in how much of each viral capsid surface was occluded beyond the Fab footprints. The AAV-antibody interactions showed a common set of footprints that overlapped some known receptor-binding sites and transduction determinants, thus suggesting potential mechanisms for virus neutralization by the antibodies.


Asunto(s)
Anticuerpos Antivirales/inmunología , Cápside/inmunología , Dependovirus/inmunología , Epítopos/inmunología , Anticuerpos Monoclonales/inmunología , Sitios de Unión , Cápside/química , Cápside/metabolismo , Microscopía por Crioelectrón , Epítopos/química , Epítopos/metabolismo , Humanos , Imagenología Tridimensional , Sustancias Macromoleculares/química , Modelos Moleculares , Unión Proteica
15.
J Virol ; 86(17): 9396-408, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718833

RESUMEN

Adeno-associated virus (AAV) has attracted considerable interest as a vector for gene therapy owing its lack of pathogenicity and the wealth of available serotypes with distinct tissue tropisms. One of the most promising isolates for vector development, based on its superior gene transfer efficiency to the liver in small animals compared to AAV type 2 (AAV2), is AAV8. Comparison of the in vivo gene transduction of rAAV2 and rAAV8 in mice showed that single amino acid exchanges in the 3-fold protrusions of AAV8 in the surface loops comprised of residues 581 to 584 and 589 to 592 to the corresponding amino acids of AAV2 and vice versa had a strong influence on transduction efficiency and tissue tropism. Surprisingly, not only did conversion of AAV8 to AAV2 cap sequences increase the transduction efficiency and change tissue tropism but so did the reciprocal conversion of AAV2 to AAV8. Insertion of new peptide motifs at position 590 in AAV8 also enabled retargeting of AAV8 capsids to specific tissues, suggesting that these sequences can interact with receptors on the cell surface. However, a neutralizing monoclonal antibody that binds to amino acids (588)QQNTA(592) of AAV8 does not prevent cell binding and virus uptake, indicating that this region is not necessary for receptor binding but rather that the antibody interferes with an essential step of postattachment processing in which the 3-fold protrusion is also involved. This study supports a multifunctional role of the 3-fold region of AAV capsids in the infection process.


Asunto(s)
Dependovirus/genética , Terapia Genética/instrumentación , Vectores Genéticos/genética , Transducción Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Dependovirus/química , Dependovirus/fisiología , Femenino , Vectores Genéticos/química , Vectores Genéticos/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
16.
J Virol ; 86(13): 7326-33, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22514350

RESUMEN

Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Galactosa/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetinae , Dependovirus/fisiología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Acoplamiento Viral
17.
J Virol ; 86(15): 7739-51, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22593150

RESUMEN

Adeno-associated viruses (AAVs) are small single-stranded DNA viruses that can package and deliver nongenomic DNA for therapeutic gene delivery. AAV8, a liver-tropic vector, has shown great promise for the treatment of hemophilia A and B. However, as with other AAV vectors, host anti-capsid immune responses are a deterrent to therapeutic success. To characterize the antigenic structure of this vector, cryo-electron microscopy and image reconstruction (cryo-reconstruction) combined with molecular genetics, biochemistry, and in vivo approaches were used to define an antigenic epitope on the AAV8 capsid surface for a neutralizing monoclonal antibody, ADK8. Docking of the crystal structures of AAV8 and a generic Fab into the cryo-reconstruction for the AAV8-ADK8 complex identified a footprint on the prominent protrusions that flank the 3-fold axes of the icosahedrally symmetric capsid. Mutagenesis and cell-binding studies, along with in vitro and in vivo transduction assays, showed that the major ADK8 epitope is formed by an AAV variable region, VRVIII (amino acids 586 to 591 [AAV8 VP1 numbering]), which lies on the surface of the protrusions facing the 3-fold axis. This region plays a role in AAV2 and AAV8 cellular transduction. Coincidently, cell binding and trafficking assays indicate that ADK8 affects a postentry step required for successful virus trafficking to the nucleus, suggesting a probable mechanism of neutralization. This structure-directed strategy for characterizing the antigenic regions of AAVs can thus generate useful information to help re-engineer vectors that escape host neutralization and are hence more efficacious.


Asunto(s)
Anticuerpos Antivirales/química , Antígenos Virales/química , Proteínas de la Cápside/química , Dependovirus/química , Mapeo Epitopo , Fragmentos Fab de Inmunoglobulinas/química , Transporte Activo de Núcleo Celular , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Núcleo Celular/genética , Núcleo Celular/inmunología , Núcleo Celular/virología , Cristalografía por Rayos X , Dependovirus/genética , Dependovirus/inmunología , Femenino , Técnicas de Transferencia de Gen , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Ratones , Estructura Terciaria de Proteína , Relación Estructura-Actividad
18.
J Virol ; 86(12): 6947-58, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22496238

RESUMEN

Adeno-associated virus serotype 9 (AAV9) has enhanced capsid-associated tropism for cardiac muscle and the ability to cross the blood-brain barrier compared to other AAV serotypes. To help identify the structural features facilitating these properties, we have used cryo-electron microscopy (cryo-EM) and three-dimensional image reconstruction (cryo-reconstruction) and X-ray crystallography to determine the structure of the AAV9 capsid at 9.7- and 2.8-Å resolutions, respectively. The AAV9 capsid exhibits the surface topology conserved in all AAVs: depressions at each icosahedral two-fold symmetry axis and surrounding each five-fold axis, three separate protrusions surrounding each three-fold axis, and a channel at each five-fold axis. The AAV9 viral protein (VP) has a conserved core structure, consisting of an eight-stranded, ß-barrel motif and the αA helix, which are present in all parvovirus structures. The AAV9 VP differs in nine variable surface regions (VR-I to -IX) compared to AAV4, but at only three (VR-I, VR-II, and VR-IV) compared to AAV2 and AAV8. VR-I differences modify the raised region of the capsid surface between the two-fold and five-fold depressions. The VR-IV difference produces smaller three-fold protrusions in AAV9 that are less "pointed" than AAV2 and AAV8. Significantly, residues in the AAV9 VRs have been identified as important determinants of cellular tropism and transduction and dictate its antigenic diversity from AAV2. Hence, the AAV9 VRs likely confer the unique infection phenotypes of this serotype.


Asunto(s)
Cápside/química , Dependovirus/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Dependovirus/clasificación , Dependovirus/genética , Dependovirus/metabolismo , Imagenología Tridimensional
19.
J Gen Virol ; 93(Pt 2): 347-355, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22071509

RESUMEN

Neutralizing antibodies play a central role in the prevention and clearance of viral infections, but can be detrimental to the use of viral capsids for gene delivery. Antibodies present a major hurdle for ongoing clinical trials using adeno-associated viruses (AAVs); however, relatively little is known about the antigenic epitopes of most AAV serotypes or the mechanism(s) of antibody-mediated neutralization. We developed panels of AAV mAbs by repeatedly immunizing mice with AAV serotype 1 (AAV1) capsids, or by sequentially immunizing with AAV1 followed by AAV5 capsids, in order to examine the efficiency and mechanisms of antibody-mediated neutralization. The antibodies were not cross-reactive between heterologous AAV serotypes except for a low level of recognition of AAV1 capsids by the AAV5 antibodies, probably due to the initial immunization with AAV1. The neutralization efficiency of different IgGs varied and Fab fragments derived from these antibodies were generally poorly neutralizing. The antibodies appeared to display various alternative mechanisms of neutralization, which included inhibition of receptor-binding and interference with a post-attachment step.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Dependovirus/inmunología , Animales , Inmunoglobulina G/inmunología , Ratones , Pruebas de Neutralización
20.
J Virol ; 85(22): 11791-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21900159

RESUMEN

The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.


Asunto(s)
Cápside/química , Dependovirus/química , Endosomas/virología , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA