Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861550

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/farmacología , Unión Proteica , Piridinas/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
2.
Am J Hum Genet ; 94(4): 611-7, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24680888

RESUMEN

In 90% of people with erythropoietic protoporphyria (EPP), the disease results from the inheritance of a common hypomorphic FECH allele, encoding ferrochelatase, in trans to a private deleterious FECH mutation. The activity of the resulting FECH enzyme falls below the critical threshold of 35%, leading to the accumulation of free protoporphyrin IX (PPIX) in bone marrow erythroblasts and in red cells. The mechanism of low expression involves a biallelic polymorphism (c.315-48T>C) localized in intron 3. The 315-48C allele increases usage of the 3' cryptic splice site between exons 3 and 4, resulting in the transcription of an unstable mRNA with a premature stop codon, reducing the abundance of wild-type FECH mRNA, and finally reducing FECH activity. Through a candidate-sequence approach and an antisense-oligonucleotide-tiling method, we identified a sequence that, when targeted by an antisense oligonucleotide (ASO-V1), prevented usage of the cryptic splice site. In lymphoblastoid cell lines derived from symptomatic EPP subjects, transfection of ASO-V1 reduced the usage of the cryptic splice site and efficiently redirected the splicing of intron 3 toward the physiological acceptor site, thereby increasing the amount of functional FECH mRNA. Moreover, the administration of ASO-V1 into developing human erythroblasts from an overtly EPP subject markedly increased the production of WT FECH mRNA and reduced the accumulation of PPIX to a level similar to that measured in asymptomatic EPP subjects. Thus, EPP is a paradigmatic Mendelian disease in which the in vivo correction of a common single splicing defect would improve the condition of most affected individuals.


Asunto(s)
Ferroquelatasa/genética , Oligonucleótidos Antisentido/uso terapéutico , Protoporfiria Eritropoyética/terapia , Línea Celular , Femenino , Humanos , Masculino , Linaje , Polimorfismo Genético , Protoporfirinas/metabolismo , Empalme del ARN , ARN Mensajero/genética
3.
Am J Hum Genet ; 91(1): 109-21, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22795135

RESUMEN

Congenital erythropoietic porphyria (CEP) is due to a deficiency in the enzymatic activity of uroporphyrinogen III synthase (UROS); such a deficiency leads to porphyrin accumulation and results in skin lesions and hemolytic anemia. CEP is a candidate for retrolentivirus-mediated gene therapy, but recent reports of insertional leukemogenesis underscore the need for safer methods. The discovery of induced pluripotent stem cells (iPSCs) has opened up new horizons in gene therapy because it might overcome the difficulty of obtaining sufficient amounts of autologous hematopoietic stem cells for transplantation and the risk of genotoxicity. In this study, we isolated keratinocytes from a CEP-affected individual and generated iPSCs with two excisable lentiviral vectors. Gene correction of CEP-derived iPSCs was obtained by lentiviral transduction of a therapeutic vector containing UROS cDNA under the control of an erythroid-specific promoter shielded by insulators. One iPSC clone, free of reprogramming genes, was obtained with a single proviral integration of the therapeutic vector in a genomic safe region. Metabolic correction of erythroblasts derived from iPSC clones was demonstrated by the disappearance of fluorocytes. This study reports the feasibility of porphyria gene therapy with the use of iPSCs.


Asunto(s)
Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/trasplante , Porfiria Eritropoyética/terapia , Uroporfirinógeno III Sintetasa/genética , Diferenciación Celular , Estudios de Factibilidad , Vectores Genéticos , Células Madre Hematopoyéticas/citología , Humanos , Queratinocitos/citología , Lentivirus/genética , Porfiria Eritropoyética/genética , Transducción Genética
4.
Mol Ther Oncol ; 32(1): 200772, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596305

RESUMEN

Thanks to its very high genome-editing efficiency, CRISPR-Cas9 technology could be a promising anticancer weapon. Clinical trials using CRISPR-Cas9 nuclease to ex vivo edit and alter immune cells are ongoing. However, to date, this strategy still has not been applied in clinical practice to directly target cancer cells. Targeting a canonical metabolic pathway essential to good functioning of cells without potential escape would represent an attractive strategy. We propose to mimic a genetic metabolic disorder in cancer cells to weaken cancer cells, independent of their genomic abnormalities. Mutations affecting the heme biosynthesis pathway are responsible for porphyria, and most of them are characterized by an accumulation of toxic photoreactive porphyrins. This study aimed to mimic porphyria by using CRISPR-Cas9 to inactivate UROS, leading to porphyrin accumulation in a prostate cancer model. Prostate cancer is the leading cancer in men and has a high mortality rate despite therapeutic progress, with a primary tumor accessible to light. By combining light with gene therapy, we obtained high efficiency in vitro and in vivo, with considerable improvement in the survival of mice. Finally, we achieved the preclinical proof-of-principle of performing cancer CRISPR gene therapy.

5.
Mol Cancer ; 12: 83, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23902722

RESUMEN

BACKGROUND: Due to frequent mutations in certain cancers, FGFR3 gene is considered as an oncogene. However, in some normal tissues, FGFR3 can limit cell growth and promote cell differentiation. Thus, FGFR3 action appears paradoxical. RESULTS: FGFR3 expression was forced in pancreatic cell lines. The receptor exerted dual effects: it suppressed tumor growth in pancreatic epithelial-like cells and had oncogenic properties in pancreatic mesenchymal-like cells. Distinct exclusive pathways were activated, STATs in epithelial-like cells and MAP Kinases in mesenchymal-like cells. Both FGFR3 splice variants had similar effects and used the same intracellular signaling. In human pancreatic carcinoma tissues, levels of FGFR3 dropped in tumors. CONCLUSION: In tumors from epithelial origin, FGFR3 signal can limit tumor growth, explaining why the 4p16.3 locus bearing FGFR3 is frequently lost and why activating mutations of FGFR3 in benign or low grade tumors of epithelial origin are associated with good prognosis. The new hypothesis that FGFR3 can harbor both tumor suppressive and oncogenic properties is crucial in the context of targeted therapies involving specific tyrosine kinase inhibitors (TKIs). TKIs against FGFR3 might result in adverse effects if used in the wrong cell context.


Asunto(s)
Células Epiteliales/metabolismo , Genes Supresores de Tumor , Fenotipo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Ligandos , Ratones , Modelos Biológicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Trasplante Heterólogo
6.
J Biol Chem ; 286(21): 19100-8, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21471201

RESUMEN

DNA-damaging agents can induce premature senescence in cancer cells, which contributes to the static effects of cancer. However, senescent cancer cells may re-enter the cell cycle and lead to tumor relapse. Understanding the mechanisms that control the viability of senescent cells may be helpful in eliminating these cells before they can regrow. Treating human squamous cell carcinoma (SCC) cells with the anti-cancer compounds, resveratrol and doxorubicin, triggered p53-independent premature senescence by invoking oxidative stress-mediated DNA damage. This process involved the mTOR-dependent phosphorylation of SIRT1 at serine 47, resulting in the inhibition of the deacetylase activity of SIRT1. SIRT1 phosphorylation caused concomitant increases in p65/RelA NF-κB acetylation and the expression of an anti-apoptotic Bfl-1/A1. SIRT1 physically interacts with the mTOR-Raptor complex, and a single amino acid substitution in the TOS (TOR signaling) motif in the SIRT1 prevented Ser-47 phosphorylation and Bfl-1/A1 induction. The pharmacologic and genetic inhibition of mTOR, unphosphorylatable S47A, or F474A TOS mutants restored SIRT1 deacetylase activity, blocked Bfl-1/A1 induction, and sensitized prematurely senescent SCC cells for apoptosis. We further show that the treatment of UVB-induced SCCs with doxorubicin transiently stabilized tumor growth but was followed by tumor regrowth upon drug removal in p53(+/-)/SKH-1 mice. The subsequent treatment of stabilized SCCs with rapamycin decreased tumor size and induced caspase-3 activation. These results demonstrate that the inhibition of SIRT1 by mTOR fosters survival of DNA damage-induced prematurely senescent SCC cells via Bfl-1/A1 in the absence of functional p53.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Senescencia Celular , Daño del ADN , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Acetilación/efectos de los fármacos , Acetilación/efectos de la radiación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/efectos de la radiación , Carcinoma de Células Escamosas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Doxorrubicina/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activación Enzimática/efectos de la radiación , Humanos , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Mutación Missense , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Estrés Oxidativo/efectos de la radiación , Fosforilación/efectos de los fármacos , Fosforilación/genética , Fosforilación/efectos de la radiación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Reguladora Asociada a mTOR , Sirtuina 1/genética , Serina-Treonina Quinasas TOR/genética , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta
7.
Mol Cancer ; 11: 81, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23088623

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. RESULTS: Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. CONCLUSION: This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene delivery in pancreatic tumors, in comparison with a broad tropism lentivirus. This study will be useful in future designing of targeted therapies for pancreatic cancer.


Asunto(s)
Antígenos de Superficie/metabolismo , Carcinoma Ductal Pancreático/terapia , Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Neoplasias Pancreáticas/terapia , Animales , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Claudinas/genética , Claudinas/metabolismo , Sistemas de Liberación de Medicamentos , Ganciclovir/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lentivirus/genética , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Ratones SCID , Mucina 4/genética , Mucina 4/metabolismo , Neoplasias Pancreáticas/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Exp Dermatol ; 21(6): 411-6, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22507556

RESUMEN

We have hypothesised that melanocytes disappear in vitiligo because they are weakly attached to the epidermal basal membrane (melanocytorrhagy). In the epidermis, attachment of melanocytes to collagen IV is mediated through DDR1, which is under the control of CCN3. DDR1 genetic variants have been associated with vitiligo in patients of different ethnic origin. In vitro studies have shown that inhibition of CCN3 induces the detachment of melanocytes. We have studied in parallel the expression of CCN3 and DDR1 in lesional and perilesional skin of patients with vitiligo and the impact of the silencing of CCN3 and DDR1 in normal human melanocytes on their behaviour in epidermal reconstructs. Our in vivo study provides evidence of a dysregulation of the DDR1-CCN3 interaction in vitiligo skin as melanocytes remaining in perilesional skin did not express CCN3. Expression of DDR1 was decreased in lesional versus perilesional vitiligo skin in the majority of patients, and the expression of collagen IV was found decreased in all patients. Silencing of CCN3 in melanocytes induced a significant inhibition of cell adhesion to collagen IV whereas melanocytes transduced with shDDR1 still adhered well on collagen IV and did not increase melanocyte loss in epidermal reconstructs as compared with normal melanocytes. Melanocyte detachment was observed but not in all reconstructs using CCN3 silenced melanocytes. Overall, our study confirms that a downregulation of CCN3 is implicated in melanocyte adhesion in part through DDR1. In vitiligo skin, the interaction of CCN3 with other molecules, such as TGFß and CCN2, needs to be addressed.


Asunto(s)
Melanocitos/metabolismo , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vitíligo/metabolismo , Adulto , Adhesión Celular , Colágeno Tipo IV/metabolismo , Receptor con Dominio Discoidina 1 , Femenino , Silenciador del Gen , Humanos , Masculino , Persona de Mediana Edad
9.
J Clin Invest ; 132(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230976

RESUMEN

Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.G12V zebrafish model, and human fibroblasts expressing lentiviral constructs carrying HRAS p.G12S or HRAS p.G12A mutations. The findings revealed alteration of mitochondrial proteostasis and defective oxidative phosphorylation in the heart and skeletal muscle of CS mice that were also found in the cell models of the disease. The underpinning mechanisms involved the inhibition of the AMPK signaling pathway by mutant forms of HRAS, leading to alteration of mitochondrial proteostasis and bioenergetics. Pharmacological activation of mitochondrial bioenergetics and quality control restored organelle function in HRAS p.G12A and p.G12S cell models, reduced left ventricle hypertrophy in CS mice, and diminished the occurrence of developmental defects in the CS zebrafish model. Collectively, these findings highlight the importance of mitochondrial proteostasis and bioenergetics in the pathophysiology of RASopathies and suggest that patients with CS may benefit from treatment with mitochondrial modulators.


Asunto(s)
Síndrome de Costello , Mutación de Línea Germinal , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Homeostasis , Humanos , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
10.
Am J Hum Genet ; 82(1): 113-24, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18179890

RESUMEN

Achieving long-term expression of a therapeutic gene in a given hematopoietic lineage remains an important goal of gene therapy. Congenital erythropoietic porphyria (CEP) is a severe autosomal-recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We used a recently obtained murine model to check the feasibility of gene therapy in this disease. Lentivirus-mediated transfer of the human UROS cDNA into hematopoietic stem cells (HSCs) from Uros(mut248) mice resulted in a complete and long-term enzymatic, metabolic, and phenotypic correction of the disease, favored by a survival advantage of corrected red blood cells. These results demonstrate that the cure of this mouse model of CEP at a moderate transduction level supports the proof of concept of a gene therapy in this disease by transplantation of genetically modified hematopoietic stem cells.


Asunto(s)
Porfiria Eritropoyética/genética , Uroporfirinógeno III Sintetasa/genética , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Eritrocitos , Femenino , Terapia Genética , Vectores Genéticos , Células Madre Hematopoyéticas , Lentivirus , Masculino , Ratones , Ratones Endogámicos BALB C , Porfiria Eritropoyética/terapia
11.
Mol Cell Proteomics ; 8(8): 1777-88, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19411282

RESUMEN

In the past 10 years, transcriptome and proteome analyses have provided valuable data on global gene expression and cell functional networks. However, when integrated,these analyses revealed partial correlations between mRNA expression levels and protein abundance thus suggesting that post-transcriptional regulations may be in part responsible for this discrepancy. In the present work, we report the development of a functional, integrated, and quantitative method to measure post-transcriptional regulations that we named FunREG. This method enables (i) quantitative measure of post-transcriptional regulations mediated by selected 3-untranslated regions and exogenous small interfering-RNA or micro-RNAs and (ii) comparison of these regulatory processes in physiologically relevant systems (e.g. cancer versus primary untransformed cells). We applied FunREG to the study of liver cancer, and we demonstrate for the first time the differential regulatory mechanisms controlling gene expression at a post-transcriptional level in normal and tumoral hepatic cells. As an example, translation efficiency mediated by heparin-binding epidermal growth factor 3-untranslated region was increased 3-fold in liver cancer cells compared with normal hepatocytes, whereas stability of an mRNA containing a portion of Cyclin D1 3-untranslated region was increased more than 2-fold in HepG2 cells compared with normal hepatocytes. Consequently we believe that the method presented herein may become an important tool in fundamental and medical research. This approach is convenient and easy to perform, accessible to any investigator, and should be adaptable to a large number of cell type, functional and chemical screens, as well as genome scale analyses. Finally FunREG may represent a helpful tool to reconcile transcriptome and proteome data.


Asunto(s)
Biología Molecular/métodos , Procesamiento Postranscripcional del ARN , Transgenes/genética , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Células Cultivadas , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Lentivirus/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
12.
Viruses ; 13(3)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669132

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the recent coronavirus disease 2019 (COVID-19) pandemic. Productive SARS-CoV-2 infection relies on viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). Indeed, viral entry into cells is mostly mediated by the early interaction between the viral spike protein S and its ACE2 receptor. The S/ACE2 complex is, thus, the first contact point between the incoming virus and its cellular target; consequently, it has been considered an attractive therapeutic target. To further characterize this interaction and the cellular processes engaged in the entry step of the virus, we set up various in silico, in vitro and in cellulo approaches that allowed us to specifically monitor the S/ACE2 association. We report here a computational model of the SARS-CoV-2 S/ACE2 complex, as well as its biochemical and biophysical monitoring using pulldown, AlphaLISA and biolayer interferometry (BLI) binding assays. This led us to determine the kinetic parameters of the S/ACE2 association and dissociation steps. In parallel to these in vitro approaches, we developed in cellulo transduction assays using SARS-CoV-2 pseudotyped lentiviral vectors and HEK293T-ACE2 cell lines generated in-house. This allowed us to recapitulate the early replication stage of the infection mediated by the S/ACE2 interaction and to detect cell fusion induced by the interaction. Finally, a cell imaging system was set up to directly monitor the S/ACE2 interaction in a cellular context and a flow cytometry assay was developed to quantify this association at the cell surface. Together, these different approaches are available for both basic and clinical research, aiming to characterize the entry step of the original SARS-CoV-2 strain and its variants as well as to investigate the possible chemical modulation of this interaction. All these models will help in identifying new antiviral agents and new chemical tools for dissecting the virus entry step.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2/química , COVID-19/metabolismo , Simulación por Computador , Células HEK293 , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
13.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393495

RESUMEN

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/enzimología , Subunidad alfa de la Proteína Trifuncional Mitocondrial , Proteínas de Neoplasias , Trimetazidina/farmacología , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Subunidad alfa de la Proteína Trifuncional Mitocondrial/antagonistas & inhibidores , Subunidad alfa de la Proteína Trifuncional Mitocondrial/biosíntesis , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Oxidación-Reducción
14.
J Gene Med ; 12(8): 637-46, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20586119

RESUMEN

BACKGROUND: Congenital erythropoietic porphyria (CEP) is a severe autosomal recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We recently demonstrated the definitive cure of a murine model of CEP by lentiviral vector-mediated hematopoietic stem cell (HSC) gene therapy. In the perspective of a gene therapy clinical trial, human cellular models are required to evaluate the therapeutic potential of lentiviral vectors in UROS-deficient cells. However, the rare incidence of the disease makes difficult the availability of HSCs derived from patients. METHODS: RNA interference (RNAi) has been used to develop a new human model of the disease from normal cord blood HSCs. Lentivectors were developed for this purpose. RESULTS: We were able to down-regulate the level of human UROS in human cell lines and primary hematopoietic cells. A 97% reduction of UROS activity led to spontaneous uroporphyrin accumulation in human erythroid bone marrow cells of transplanted immune-deficient mice, recapitulating the phenotype of cells derived from patients. A strong RNAi-induced UROS inhibition allowed us to test the efficiency of different lentiviral vectors with the aim of selecting a safer vector. Restoration of UROS activity in these small hairpin RNA-transduced CD34(+) cord blood cells by therapeutic lentivectors led to a partial correction of the phenotype in vivo. CONCLUSIONS: The RNAi strategy is an interesting new tool for preclinical gene therapy evaluation.


Asunto(s)
Terapia Genética/métodos , Porfiria Eritropoyética/terapia , Interferencia de ARN , Animales , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Humanos , Células K562 , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Porfiria Eritropoyética/enzimología , Porfiria Eritropoyética/genética , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo
15.
Pigment Cell Melanoma Res ; 33(3): 435-445, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31692218

RESUMEN

Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF-2 and keratin 5. In vitro analysis confirmed that FGF-2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling-Degos Disease (DDD) have already been associated with the pheomelanosome-eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age-related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.


Asunto(s)
Dermis/metabolismo , Epidermis/metabolismo , Queratina-5/metabolismo , Adulto , Animales , Diferenciación Celular , Proliferación Celular , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/patología , Xenoinjertos , Humanos , Hiperpigmentación/patología , Lentigo/patología , Melaninas/metabolismo , Ratones Desnudos , Enfermedades Cutáneas Genéticas/patología , Enfermedades Cutáneas Papuloescamosas/patología , Pigmentación de la Piel , Población Blanca
16.
Neuro Oncol ; 22(4): 550-562, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31711240

RESUMEN

BACKGROUND: Diffuse midline glioma (DMG) is a pediatric malignancy with poor prognosis. Most children die less than one year after diagnosis. Recently, mutations in histone H3 have been identified and are believed to be oncogenic drivers. Targeting this epigenetic abnormality using histone deacetylase (HDAC) inhibitors such as panobinostat (PS) is therefore a novel therapeutic option currently evaluated in clinical trials. METHODS: BH3 profiling revealed engagement in an irreversible apoptotic process of glioma cells exposed to PS confirmed by annexin-V/propidium iodide staining. Using proteomic analysis of 3 DMG cell lines, we identified 2 proteins deregulated after PS treatment. We investigated biological effects of their downregulation by silencing RNA but also combinatory effects with PS treatment in vitro and in vivo using a chick embryo DMG model. Electron microscopy was used to validate protein localization. RESULTS: Scaffolding proteins EBP50 and IRSp53 were upregulated by PS treatment. Reduction of these proteins in DMG cell lines leads to blockade of proliferation and migration, invasion, and an increase of apoptosis. EBP50 was found to be expressed in cytoplasm and nucleus in DMG cells, confirming known oncogenic locations of the protein. Treatment of glioma cells with PS together with genetic or chemical inhibition of EBP50 leads to more effective reduction of cell growth in vitro and in vivo. CONCLUSION: Our data reveal a specific relation between HDAC inhibitors and scaffolding protein deregulation which might have a potential for therapeutic intervention for cancer treatment.


Asunto(s)
Glioma , Histona Desacetilasas , Animales , Apoptosis , Línea Celular Tumoral , Embrión de Pollo , Niño , Glioma/tratamiento farmacológico , Glioma/genética , Inhibidores de Histona Desacetilasas/farmacología , Histonas , Humanos , Panobinostat , Proteómica
17.
Cancer Res ; 79(20): 5191-5203, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31358527

RESUMEN

Chemotherapies alter cellular redox balance and reactive oxygen species (ROS) content. Recent studies have reported that chemoresistant cells have an increased oxidative state in hematologic malignancies. In this study, we demonstrated that chemoresistant acute myeloid leukemia (AML) cells had a lower level of mitochondrial and cytosolic ROS in response to cytarabine (AraC) and overexpressed myeloperoxidase (MPO), a heme protein that converts hydrogen peroxide to hypochlorous acid (HOCl), compared with sensitive AML cells. High MPO-expressing AML cells were less sensitive to AraC in vitro and in vivo. They also produced higher levels of HOCl and exhibited an increased rate of mitochondrial oxygen consumption when compared with low MPO-expressing AML cells. Targeting MPO expression or enzyme activity sensitized AML cells to AraC treatment by triggering oxidative damage and sustaining oxidative stress, particularly in high MPO-expressing AML cells. This sensitization stemmed from mitochondrial superoxide accumulation, which impaired oxidative phosphorylation and cellular energetic balance, driving apoptotic death and selective eradication of chemoresistant AML cells in vitro and in vivo. Altogether, this study uncovers a noncanonical function of MPO enzyme in maintaining redox balance and mitochondrial energetic metabolism, therefore affecting downstream pathways involved in AML chemoresistance. SIGNIFICANCE: These findings demonstrate the role of myeloperoxidase in the regulation of ROS levels and sensitivity of AML cells to cytarabine, an essential chemotherapeutic backbone in the therapy of AML.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Citarabina/farmacología , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/enzimología , Terapia Molecular Dirigida , Proteínas de Neoplasias/antagonistas & inhibidores , Peroxidasa/antagonistas & inhibidores , Animales , Apoptosis , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Humanos , Ácido Hipocloroso/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Proteínas de Neoplasias/fisiología , Oxidación-Reducción , Estrés Oxidativo , Peroxidasa/fisiología , ARN Neoplásico/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Especies Reactivas de Oxígeno , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Nat Commun ; 10(1): 1136, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850590

RESUMEN

CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.


Asunto(s)
Sistemas CRISPR-Cas , Cromosomas Humanos Par 10 , Roturas del ADN de Doble Cadena , Desoxirribonucleasa I/genética , Edición Génica/métodos , Terapia Genética/métodos , Uroporfirinógeno III Sintetasa/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Genoma Humano , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células K562 , Modelos Biológicos , Porfiria Eritropoyética/genética , Porfiria Eritropoyética/metabolismo , Porfiria Eritropoyética/patología , Porfiria Eritropoyética/terapia , Cultivo Primario de Células , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Reparación del ADN por Recombinación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Uroporfirinógeno III Sintetasa/metabolismo
19.
Genetics ; 173(4): 2143-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16702435

RESUMEN

We previously reported that corticosteroid-binding globulin gene (Cbg) may be the causal gene of a quantitative trait locus associated with cortisol levels, fat deposition, and muscle content in a pig intercross. Sequence analysis of parental animals allowed us to identify four amino-acid substitutions. Here we have examined if any of these single amino acid substitutions could be responsible for the difference in CBG binding and affinity for cortisol between the parental breeds, using in vitro assays of Cbg variants after transfection of mammalian cells. Additionally, the Cbg coding region was analyzed in samples from a synthetic pig line to study association between polymorphism and CBG biochemical properties, carcass composition, and meat quality. Both in vitro transfection assays and the association studies suggest a role of the Arg307Gly mutation in increasing CBG capacity (by >70%) and decreasing CBG affinity for cortisol (by 30%). The Ile265Val substitution may also have an effect on decreasing CBG affinity for cortisol by 25%. The mutations Ser15Ile and Thr257Met do not seem to have an effect on CBG parameters. The Arg307Gly substitution was the only mutation associated with a parameter of meat quality and no mutation was linked to carcass composition.


Asunto(s)
Obesidad/genética , Mutación Puntual , Sitios de Carácter Cuantitativo/genética , Receptores de Superficie Celular/genética , Enfermedades de los Porcinos/genética , Porcinos/genética , Sustitución de Aminoácidos , Animales , Femenino , Humanos , Obesidad/veterinaria , Sistemas de Lectura Abierta , Polimorfismo Genético , Serpinas , Transcortina
20.
Oligonucleotides ; 17(2): 151-65, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17638520

RESUMEN

We have previously described how a 16 nucleotides ODN (termed 93del) is capable of inhibiting the activity of recombinant integrase in a cell-free system as well as HIV-1 replication in human-infected cells with IC(50) in the low nanomolar range. Intracellular HIV-1 replication was inhibited when the ODN was added at the onset of infection. These results raise several questions. Is a naked ODN able to enter the cell? Does the virus play a role in ODN entry? The uptake of several ODNs (93del, 60del(sc), TBA, T30923) was evaluated and then tracked by labeling the ODN with a fluorescent dye and assessing its intracellular localization by confocal microscopy. A significant level of cellular uptake of free ODN was observed in several cell lines: HeLa epithelial cells, Huh7 hepatic cells, and H9 lymphocytes, and was detected for all ODNs tested except for TBA. Striking differences were observed when naked ODNs were added to cell in the presence or absence of the virus. When HIV-1 virions were present a sharp increase in cellular fluorescence was observed. These results strongly suggest a role for HIV-1 virions in the uptake of certain ODNs.


Asunto(s)
VIH-1/fisiología , Oligonucleótidos/metabolismo , Línea Celular , Citometría de Flujo , Colorantes Fluorescentes , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/farmacología , VIH-1/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Oligonucleótidos/farmacología , Virión/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA