Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pathol ; 263(2): 257-269, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38613194

RESUMEN

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition. Molecular profiling of the resistant clones revealed an acquired NF2 loss of function mutation that was absent in the parental cell model. Parental cells showed continuous sensitivity to TRK-targeted treatment, whereas the resistant clones were insensitive. Furthermore, resistant clones showed upregulation of the MAPK and mTOR/AKT pathways in the gene expression based on RNA sequencing data and increased sensitivity to MEK and mTOR inhibitor therapy. Drug synergy was seen using trametinib and rapamycin in combination with entrectinib. Medium-throughput drug screening further identified small compounds as potential drug candidates to overcome resistance as monotherapy or in combination with entrectinib. In summary, we developed a comprehensive model of drug resistance in an LMNA::NTRK1-rearranged soft-tissue sarcoma and have broadened the understanding of acquired drug resistance to targeted TRK therapy. Furthermore, we identified drug combinations and small compounds to overcome acquired drug resistance and potentially guide patient care in a functional precision oncology setting. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Resistencia a Antineoplásicos , Reordenamiento Génico , Lamina Tipo A , Mutación , Neurofibromina 2 , Inhibidores de Proteínas Quinasas , Receptor trkA , Sarcoma , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Resistencia a Antineoplásicos/genética , Receptor trkA/genética , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Sarcoma/genética , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Sarcoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Piridonas/farmacología , Benzamidas/farmacología , Pirimidinonas/farmacología , Sirolimus/farmacología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Transducción de Señal/efectos de los fármacos , Sinergismo Farmacológico , Indazoles
2.
Lab Invest ; 103(4): 100039, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870294

RESUMEN

Responses to therapy often cannot be exclusively predicted by molecular markers, thus evidencing a critical need to develop tools for better patient selection based on relations between tumor phenotype and genotype. Patient-derived cell models could help to better refine patient stratification procedures and lead to improved clinical management. So far, such ex vivo cell models have been used for addressing basic research questions and in preclinical studies. As they now enter the era of functional precision oncology, it is of utmost importance that they meet quality standards to fully represent the molecular and phenotypical architecture of patients' tumors. Well-characterized ex vivo models are imperative for rare cancer types with high patient heterogeneity and unknown driver mutations. Soft tissue sarcomas account for a very rare, heterogeneous group of malignancies that are challenging from a diagnostic standpoint and difficult to treat in a metastatic setting because of chemotherapy resistance and a lack of targeted treatment options. Functional drug screening in patient-derived cancer cell models is a more recent approach for discovering novel therapeutic candidate drugs. However, because of the rarity and heterogeneity of soft tissue sarcomas, the number of well-established and characterized sarcoma cell models is extremely limited. Within our hospital-based platform we establish high-fidelity patient-derived ex vivo cancer models from solid tumors for enabling functional precision oncology and addressing research questions to overcome this problem. We here present 5 novel, well-characterized, complex-karyotype ex vivo soft tissue sarcosphere models, which are effective tools to study molecular pathogenesis and identify the novel drug sensitivities of these genetically complex diseases. We addressed the quality standards that should be generally considered for the characterization of such ex vivo models. More broadly, we suggest a scalable platform to provide high-fidelity ex vivo models to the scientific community and enable functional precision oncology.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Medicina de Precisión/métodos , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/diagnóstico , Evaluación Preclínica de Medicamentos , Biomarcadores de Tumor/genética
3.
Histopathology ; 82(7): 1003-1012, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36759438

RESUMEN

AIMS: NTRK rearranged tumours are rare but can be successfully treated using anti-TRK-targeted therapies, making NTRK testing important for treatment choices in patients with advanced cancers. Pan-Trk immunohistochemistry (IHC) has become a valuable and affordable screening tool in many laboratories. Unfortunately, the choice of antibodies and IHC protocols to investigate biomarkers is not standardised. In this study, we compared the performance of four pan-Trk IHC methods, using three different clones, primarily in NTRK fusion-positive tumours. METHODS AND RESULTS: We studied the performance of four pan-Trk IHC methods using three different clones: EPR17341 (Abcam and Ventana), EP1058Y (Abcam) and A7H6R (Cell Signaling) in 22 molecularly confirmed NTRK rearranged tumours. Additionally, selected NTRK fusion-negative tumours were further included: NTRK mutated (n = 8) and amplified (n = 15) tumours as well as NTRK fusion-negative tumours driven by other gene fusions, such as ALK, ROS1 and BCOR (n = 20), as well as salivary gland tumours (n = 16). Inter-rater agreement of three pathologists was additionally calculated, including H-score. With clone EPR17341 (Abcam in-house and ready-to-use Ventana protocol), all molecularly confirmed NTRK1-3 rearranged tumours were positively detected by immunohistochemistry, while the other clones missed NTRK2-3 rearranged tumours. For the fusion-negative cohort we found the best performance (least false-positive cases) using the clone A7H6R (Cell Signalling). CONCLUSION: Given the therapeutic importance, testing for NTRK rearrangements in daily practice has become necessary and, despite IHC being a fast and affordable tool, using it in routine diagnostics is complicated and requires a high level of expertise.


Asunto(s)
Neoplasias , Neoplasias de las Glándulas Salivales , Humanos , Receptor trkA/genética , Inmunohistoquímica , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias de las Glándulas Salivales/patología , Biomarcadores de Tumor/genética , Proteínas de Fusión Oncogénica/genética
4.
Mod Pathol ; 35(12): 1860-1869, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35864317

RESUMEN

The switch/sucrose-non-fermenting (SWI/SNF) complex is an ATP-dependent chromatin remodeling complex that plays important roles in DNA repair, transcription and cell differentiation. This complex consists of multiple subunits and is of particular interest in thoracic malignancies due to frequent subunit alteration of SMARCA4 (BRG1). Much less is known about SMARCB1 (INI1) deficient intrathoracic neoplasms, which are rare, often misclassified and understudied. In a retrospective analysis of 1479 intrathoracic malignant neoplasms using immunohistochemistry for INI1 (SMARCB1) on tissue micro arrays (TMA) and a search through our hospital sarcoma database, we identified in total nine intrathoracic, INI1 deficient cases (n = 9). We characterized these cases further by additional immunohistochemistry, broad targeted genomic analysis, methylation profiling and correlated them with clinical and radiological data. This showed that genomic SMARCB1 together with tumor suppressor alterations drive tumorigenesis in some of these cases, rather than epigenetic changes such as DNA methylation. A proper diagnostic classification, however, remains challenging. Intrathoracic tumors with loss or alteration of SMARCB1 (INI1) are highly aggressive and remain often underdiagnosed due to their rarity, which leads to false diagnostic interpretations. A better understanding of these tumors and proper diagnosis is important for better patient care as clinical trials and more targeted therapeutic options are emerging.


Asunto(s)
Biomarcadores de Tumor , Sarcoma , Humanos , Estudios Retrospectivos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Inmunohistoquímica , Ensamble y Desensamble de Cromatina , Sarcoma/patología , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
5.
Mod Pathol ; 35(12): 1888-1899, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36115922

RESUMEN

Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Although histology and pathologic stage are important prognostic factors, better prognostic biomarkers are needed. The ribosomal protein S6 is a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway involved in protein synthesis and cell proliferation. In previous studies, low phosphorylated S6 (pS6) immunoreactivity was significantly correlated with longer progression-free survival (PFS) and overall survival (OS) in PM patients. We aimed to correlate pS6 expression to clinical data in a large multi-centre PM cohort as part of the European Thoracic Oncology Platform (ETOP) Mesoscape project. Tissue Micro Arrays (TMAs) of PM were constructed and expression of pS6 was evaluated by a semi-quantitatively aggregate H-score. Expression results were correlated to patient characteristics as well as OS/PFS. pS6 IHC results of 364 patients from 9 centres, diagnosed between 1999 and 2017 were available. The primary histology of included tumours was epithelioid (70.3%), followed by biphasic (24.2%) and sarcomatoid (5.5%). TMAs included both treatment-naïve and tumour tissue taken after induction chemotherapy. High pS6 expression (181 patients with H-score>1.41) was significantly associated with less complete resection. In the overall cohort, OS/PFS were not significantly different between pS6-low and pS6-high patients. In a subgroup analysis non-epithelioid (biphasic and sarcomatoid) patients with high pS6 expression showed a significantly shorter OS (p < 0.001, 10.7 versus 16.9 months) and PFS (p < 0.001, 6.2 versus 10.8 months). In subgroup analysis, in non-epithelioid PM patients high pS6 expression was associated with significantly shorter OS and PFS. These exploratory findings suggest a clinically relevant PI3K pathway activation in non-epithelioid PM which might lay the foundation for future targeted treatment strategies.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Sarcoma , Humanos , Neoplasias Pulmonares/patología , Mesotelioma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pleurales/patología , Pronóstico , Proteína S6 Ribosómica
6.
Respiration ; 101(2): 155-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34525475

RESUMEN

BACKGROUND: Findings from autopsies have provided evidence on systemic microvascular damage as one of the underlying mechanisms of Coronavirus disease 2019 (CO-VID-19). The aim of this study was to correlate autopsy-based cause of death in SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients with chest imaging and severity grade of pulmonary and systemic morphological vascular pathology. METHODS: Fifteen SARS-CoV-2 positive autopsies with clinically distinct presentations (age 22-89 years) were retrospectively analyzed with focus on vascular, thromboembolic, and ischemic changes in pulmonary and in extrapulmonary sites. Eight patients died due to COVID-19 associated respiratory failure with diffuse alveolar damage in various stages and/or multi-organ failure, whereas other reasons such as cardiac decompensation, complication of malignant tumors, or septic shock were the cause of death in 7 further patients. The severity of gross and histopathological changes was semi-quantitatively scored as 0 (absent), 1 (mild), and 3 (severe). Severity scores between the 2 groups were correlated with selected clinical parameters, initial chest imaging, autopsy-based cause of death, and compared using Pearson χ2 and Mann-Whitney U tests. RESULTS: Severe pulmonary endotheliitis (p = 0.031, p = 0.029) and multi-organ involvement (p = 0.026, p = 0.006) correlated significantly with COVID-19 associated death. Pulmonary microthrombi showed limited statistical correlation, while tissue necrosis, gross pulmonary embolism, and bacterial superinfection did not differentiate the 2 study groups. Chest imaging at hospital admission did not differ either. CONCLUSIONS: Extensive pulmonary endotheliitis and multi-organ involvement are characteristic autopsy features in fatal CO-VID-19 associated deaths. Thromboembolic and ischemic events and bacterial superinfections occur frequently in SARS-CoV-2 infection independently of outcome.


Asunto(s)
COVID-19/mortalidad , COVID-19/patología , Endotelio Vascular/patología , Insuficiencia Multiorgánica/virología , Síndrome de Dificultad Respiratoria/virología , Vasculitis/virología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , COVID-19/complicaciones , Causas de Muerte , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/mortalidad , Insuficiencia Multiorgánica/patología , Alveolos Pulmonares/patología , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/patología , Vasculitis/mortalidad , Vasculitis/patología , Adulto Joven
7.
Lab Invest ; 101(12): 1561-1570, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34446805

RESUMEN

CD8+ tumor-infiltrating T cells can be regarded as one of the most relevant predictive biomarkers in immune-oncology. Highly infiltrated tumors, referred to as inflamed (clinically "hot"), show the most favorable response to immune checkpoint inhibitors in contrast to tumors with a scarce immune infiltrate called immune desert or excluded (clinically "cold"). Nevertheless, quantitative and reproducible methods examining their prevalence within tumors are lacking. We therefore established a computational diagnostic algorithm to quantitatively measure spatial densities of tumor-infiltrating CD8+ T cells by digital pathology within the three known tumor compartments as recommended by the International Immuno-Oncology Biomarker Working Group in 116 prospective metastatic melanomas of the Swiss Tumor Profiler cohort. Workflow robustness was confirmed in 33 samples of an independent retrospective validation cohort. The introduction of the intratumoral tumor center compartment proved to be most relevant for establishing an immune diagnosis in metastatic disease, independent of metastatic site. Cut-off values for reproducible classification were defined and successfully assigned densities into the respective immune diagnostic category in the validation cohort with high sensitivity, specificity, and precision. We provide a robust diagnostic algorithm based on intratumoral and stromal CD8+ T-cell densities in the tumor center compartment that translates spatial densities of tumor-infiltrating CD8+ T cells into the clinically relevant immune diagnostic categories "inflamed", "excluded", and "desert". The consideration of the intratumoral tumor center compartment allows immune phenotyping in the clinically highly relevant setting of metastatic lesions, even if the invasive margin compartment is not captured in biopsy material.


Asunto(s)
Linfocitos T CD8-positivos , Procesamiento de Imagen Asistido por Computador , Inmunofenotipificación/métodos , Melanoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Aprendizaje Profundo , Femenino , Humanos , Masculino , Melanoma/inmunología , Persona de Mediana Edad
8.
Liver Int ; 41(10): 2404-2417, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34018314

RESUMEN

BACKGROUND & AIMS: Little is known about cholestasis, including its most severe variant secondary sclerosing cholangitis (SSC), in critically ill patients with coronavirus disease 19 (COVID-19). In this study, we analysed the occurrence of cholestatic liver injury and SSC, including clinical, serological, radiological and histopathological findings. METHODS: We conducted a retrospective single-centre analysis of all consecutive patients admitted to the intensive care unit (ICU) as a result of severe COVID-19 at the University Hospital Zurich to describe cholestatic injury in these patients. The findings were compared to a retrospective cohort of patients with severe influenza A. RESULTS: A total of 34 patients with severe COVID-19 admitted to the ICU were included. Of these, 14 patients (41%) had no cholestasis (group 0), 11 patients (32%, group 1) developed mild and 9 patients (27%, group 2) severe cholestasis. Patients in group 2 had a more complicated disease course indicated by significantly longer ICU stay (median 51 days, IQR 25-86.5) than the other groups (group 0: median 9.5 days, IQR 3.8-18.3, P = .001; and group 1: median 16 days, IQR 8-30, P < .05 respectively). Four patients in group 2 developed SSC compared to none in the influenza A cohort. The available histopathological findings suggest an ischaemic damage to the perihilar bile ducts. CONCLUSIONS: The development of SSC represents an important complication of critically ill COVID-19 patients and needs to be considered in the diagnostic work up in prolonged cholestasis. The occurrence of SSC is of interest in the ongoing pandemic since it is associated with considerable morbidity and mortality.


Asunto(s)
COVID-19 , Colangitis Esclerosante , Ictericia , Colangitis Esclerosante/complicaciones , Enfermedad Crítica , Humanos , Unidades de Cuidados Intensivos , Estudios Retrospectivos , SARS-CoV-2
13.
Diagn Pathol ; 19(1): 130, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334415

RESUMEN

BACKRGOUND: Merkel cell carcinoma (MCC) is a rare, aggressive primary cutaneous neuroendocrine carcinoma, frequently associated with clonal Merkel cell polyomavirus integration. MCC can pose significant diagnostic challenges due to its diverse clinical presentation and its broad histological differential diagnosis. Histologically, MCC presents as a small-round-blue cell neoplasm, where the differential diagnosis includes basal cell carcinoma, melanoma, hematologic malignancies, round cell sarcoma and metastatic small cell carcinoma of any site. We here report strong aberrant immunoreactivity for BCOR in MCC, a marker commonly used to identify round cell sarcomas and other neoplasms with BCOR alterations. METHODS: Based on strong BCOR expression in three index cases of MCC, clinically mistaken as sarcoma, a retrospective analysis of three patient cohorts, comprising 31 MCC, 19 small cell lung carcinoma (SCLC) and 5 cases of neoplasms with molecularly confirmed BCOR alteration was conducted. Immunohistochemical staining intensity and localization for BCOR was semi-quantitatively analyzed. RESULTS: Three cases, clinically and radiologically mimicking a sarcoma were analyzed in our soft tissue and bone pathology service. Histologically, the cases showed sheets of a small round blue cell neoplasm. A broad panel of immunohistochemistry was used for lineage classification. Positivity for synaptophysin, CK20 and Merkel cell polyoma virus large T-antigen lead to the diagnosis of a MCC. Interestingly, all cases showed strong positive nuclear staining for BCOR, which was included for the initial work-up with the clinical differential of a round cell sarcoma. We analyzed a larger retrospective MCC cohort and found aberrant weak to strong BCOR positivity (nuclear and/or cytoplasmic) in up to 90% of the cases. As a positive control, we compared the expression to a small group of BCOR-altered neoplasms. Furthermore, we investigated a cohort of SCLC as another neuroendocrine neoplasm and found in all cases a diffuse moderate to strong BCOR positivity. CONCLUSIONS: This study demonstrates that neuroendocrine neoplasms, such as MCC and SCLC can express strong aberrant BCOR. This might represent a diagnostic challenge or pitfall, in particular when MCC is clinically mistaken as a soft tissue or a bone sarcoma.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células de Merkel , Inmunohistoquímica , Proteínas Proto-Oncogénicas , Proteínas Represoras , Neoplasias Cutáneas , Carcinoma de Células de Merkel/diagnóstico , Carcinoma de Células de Merkel/patología , Carcinoma de Células de Merkel/química , Carcinoma de Células de Merkel/metabolismo , Humanos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/virología , Neoplasias Cutáneas/metabolismo , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/análisis , Proteínas Represoras/metabolismo , Biomarcadores de Tumor/análisis , Estudios Retrospectivos , Masculino , Diagnóstico Diferencial , Anciano , Femenino , Anciano de 80 o más Años , Persona de Mediana Edad , Sarcoma/diagnóstico , Sarcoma/patología
14.
Cancer Cell ; 42(3): 396-412.e5, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38242124

RESUMEN

Despite advances in treatment, lung cancer survival rates remain low. A better understanding of the cellular heterogeneity and interplay of cancer-associated fibroblasts (CAFs) within the tumor microenvironment will support the development of personalized therapies. We report a spatially resolved single-cell imaging mass cytometry (IMC) analysis of CAFs in a non-small cell lung cancer cohort of 1,070 patients. We identify four prognostic patient groups based on 11 CAF phenotypes with distinct spatial distributions and show that CAFs are independent prognostic factors for patient survival. The presence of tumor-like CAFs is strongly correlated with poor prognosis. In contrast, inflammatory CAFs and interferon-response CAFs are associated with inflamed tumor microenvironments and higher patient survival. High density of matrix CAFs is correlated with low immune infiltration and is negatively correlated with patient survival. In summary, our data identify phenotypic and spatial features of CAFs that are associated with patient outcome in NSCLC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Fibroblastos Asociados al Cáncer/patología , Pronóstico , Fenotipo , Microambiente Tumoral , Fibroblastos/patología
15.
Cancer Lett ; 584: 216650, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246222

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis due to late detection and limited treatment options. Some PDAC patients harbor alterations that qualify for targeted treatment strategies but develop acquired resistance, leading to treatment failure. We here report the ex vivo modeling of acquired drug resistance by creating a PDAC patient-derived tumor organoid (PDTO) model harboring a rare BRAF R506_K507ins VLR mutation resulting in a resistance to trametinib, a MEK inhibitor. Genomic and transcriptomic analyses revealed upregulated WNT signaling in resistant PDTO clones compared to treatment-naïve parental control cells. By combining genomic and transcriptomic analysis with a functional drug testing approach, we uncovered a de novo upregulation and circumventive reliance on WNT signaling in resistant PDTO clones. Ex vivo models such as PDTOs represent valuable tools for resistance modelling and offer the discovery of novel therapeutic approaches for patients in need where clinical diagnostic tools are currently at the limit.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Resistencia a Antineoplásicos/genética , Organoides/patología
16.
Sci Rep ; 14(1): 22324, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333597

RESUMEN

Multimodal therapy for peritoneal metastasis (PM) including cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) provides long-term survival in highly selected colorectal cancer patients. Mechanisms behind HIPEC are unknown and may include induction of adaptive immunity. We therefore analyzed human PM samples and explored the impact of HIPEC in experimental models. Human samples from colorectal primary tumors (n = 19) and PM lesions (n = 37) were examined for the presence of CD8 + T-cells and their association with disease free (DFS) and overall survival (OS). CD8 + T cell response after HIPEC was assessed using an in-vivo PM mouse model, tumor cell lines and patient-derived tumor organoids. Patients with high intraepithelial CD8 + T cell counts showed longer DFS and OS. In the mouse model, HIPEC controlled growth of PM and increased numbers of functional granzyme positive CD8 + T cells within tumors. Cell lines and human organoids that were treated with heated chemotherapies showed immunogenic changes, reflected by significantly higher levels of MHC-class I molecules and expression of Cancer Testis Antigens Cyclin A1 and SSX-4. Using in-vitro co-culture assays, we noticed that cancer cells treated with heated chemotherapy primed dendritic cells, which subsequently enhanced effector functions of CD8 + T cells. The presence of CD8 + T-cells within PM lesions is associated with prolonged survival of patients with PM. Data from PM mouse model and in-vitro assay show that heated chemotherapies induce immunogenic changes on cancer cells leading to induction of CD8 + T-cells mediated immunity, which seems to control growth of PM lesions in mice after HIPEC.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Peritoneales , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/terapia , Neoplasias Peritoneales/inmunología , Humanos , Animales , Quimioterapia Intraperitoneal Hipertérmica/métodos , Ratones , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/inmunología , Línea Celular Tumoral , Femenino , Masculino
17.
Transplant Direct ; 9(9): e1516, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37575952

RESUMEN

Acute rejection is still a major limitation for a successful outcome in lung transplantation. Since ß-nicotinamide adenine dinucleotide (NAD+) has been shown to have various immunomodulatory properties on the innate and adaptive immune system, we evaluate here a potential protective effect of NAD+ against acute lung rejection. Methods: Rat single-lung transplantation was performed in 2 groups (n = 8 per group), using Brown-Norway donors and major histocompatibility complex-mismatched Lewis recipients. Recipients of the NAD+ group received 1000 mg/kg NAD+ intraperitoneally before transplantation and daily thereafter until euthanasia, whereas the control group received saline solution. At autopsy on day 5, blood samples were analyzed and the lung allograft was assessed by bronchioalveolar lavage, histology, and immunochemistry. Results: The NAD+ group maintained an intact compliant lung tissue, a strong trend of lower acute cellular rejection (A3 versus A3-A4) and significantly less lymphocytic bronchiolitis (B0-B2R versus B1R-Bx). In addition, a trend of fewer alveolar CD68+ macrophages and significantly fewer interstitial CD163+ macrophages was observed. Bronchoalveolar lavage in the NAD+ group showed significantly fewer proinflammatory cytokines interleukin (IL)-6, IL-13, TNFα, and a protective IL-6/IL-10-ratio. In blood samples, we observed significantly fewer neutrophils, and proinflammatory GRO/KC in the NAD+ group. Conclusions: NAD+ might be a promising substance in prevention of acute allograft rejection in lung transplantation.

18.
Front Oncol ; 13: 1210004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727209

RESUMEN

Introduction: Complete surgical tumor resection is paramount in the management of soft tissue sarcoma (STS) in humans, dogs, and cats alike. Near-infrared targeted tracers for fluorescence-guided surgery (FGS) could facilitate intraoperative visualization of the tumor and improve resection accuracy. Target identification is complicated in STS due to the rarity and heterogeneity of the disease. This study aims to validate the expression of fibroblast activation protein alpha (FAP) in selected human, canine, and feline STS subtypes to assess the value of FAP as a target for FGS and to validate companion animals as a translational model. Methods: Formalin-fixed and paraffin-embedded tissue samples from 53 canine STSs (perivascular wall tumor (PWT), canine fibrosarcoma (cFS), and STS not further specified (NOS)), 24 feline fibrosarcomas, and 39 human STSs (myxofibrosarcoma, undifferentiated pleomorphic sarcoma, dermatofibrosarcoma protuberans, and malignant peripheral nerve sheath tumor) as well as six canine and seven feline healthy controls and 10 inflamed tissue samples were immunohistochemically stained for their FAP expression. FAP labeling in tumor, peritumoral, healthy skin, and inflamed tissue samples was quantified using a visually assessed semiquantitative expression score and digital image analysis. Target selection criteria (TASC) scoring was subsequently performed as previously described. Results: Eighty-five percent (85%) of human (33/39), 76% of canine (40/53), and 92% of feline (22/24) STSs showed FAP positivity in over 10% of the tumor cells. A high expression was determined in 53% canine (28/53), 67% feline (16/24), and 44% human STSs (17/39). The average FAP-labeled area of canine, feline, and human STSs was 31%, 33%, and 42%, respectively (p > 0.8990). The FAP-positive tumor area was larger in STS compared to healthy and peritumoral tissue samples (p < 0.0001). TASC scores were above 18 for all feline and human STS subtypes and canine PWTs but not for canine STS NOS and cFS. Conclusion: This study represents the first cross-species target evaluation of FAP for STS. Our results demonstrate that FAP expression is increased in various STS subtypes compared to non-cancerous tissues across species, thereby validating dogs and cats as suitable animal models. Based on a TASC score, FAP could be considered a target for FGS.

19.
Nat Commun ; 14(1): 1383, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914624

RESUMEN

Transplantation of solid organs can be life-saving in patients with end-stage organ failure, however, graft rejection remains a major challenge. In this study, by pre-conditioning with interleukin-2 (IL-2)/anti-IL-2 antibody complex treatment biased toward IL-2 receptor α, we achieved acceptance of fully mismatched orthotopic lung allografts that remained morphologically and functionally intact for more than 90 days in immunocompetent mice. These allografts are tolerated by the actions of forkhead box p3 (Foxp3)+ regulatory T (Treg) cells that home to the lung allografts. Although counts of circulating Treg cells rapidly return to baseline following cessation of IL-2 treatment, Foxp3+ Treg cells persist in peribronchial and peribronchiolar areas of the grafted lungs, forming organized clusters reminiscent of inducible tertiary lymphoid structures (iTLS). These iTLS in lung allografts are made of Foxp3+ Treg cells, conventional T cells, and B cells, as evidenced by using microscopy-based distribution and neighborhood analyses. Foxp3-transgenic mice with inducible and selective deletion of Foxp3+ cells are unable to form iTLS in lung allografts, and these mice acutely reject lung allografts. Collectively, we report that short-term, high-intensity and biased IL-2 pre-conditioning facilitates acceptance of vascularized and ventilated lung allografts without the need of immunosuppression, by inducing Foxp3-controlled iTLS formation within allografts.


Asunto(s)
Supervivencia de Injerto , Interleucina-2 , Ratones , Animales , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pulmón , Rechazo de Injerto , Linfocitos T Reguladores , Ratones Transgénicos , Aloinjertos , Factores de Transcripción Forkhead
20.
EMBO Mol Med ; 15(4): e16863, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36779660

RESUMEN

Defects in homologous recombination repair (HRR) in tumors correlate with poor prognosis and metastases development. Determining HRR deficiency (HRD) is of major clinical relevance as it is associated with therapeutic vulnerabilities and remains poorly investigated in sarcoma. Here, we show that specific sarcoma entities exhibit high levels of genomic instability signatures and molecular alterations in HRR genes, while harboring a complex pattern of chromosomal instability. Furthermore, sarcomas carrying HRDness traits exhibit a distinct SARC-HRD transcriptional signature that predicts PARP inhibitor sensitivity in patient-derived sarcoma cells. Concomitantly, HRDhigh sarcoma cells lack RAD51 nuclear foci formation upon DNA damage, further evidencing defects in HRR. We further identify the WEE1 kinase as a therapeutic vulnerability for sarcomas with HRDness and demonstrate the clinical benefit of combining DNA damaging agents and inhibitors of DNA repair pathways ex vivo and in the clinic. In summary, we provide a personalized oncological approach to treat sarcoma patients successfully.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Osteosarcoma , Sarcoma , Humanos , Reparación del ADN por Recombinación , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Sarcoma/terapia , Sarcoma/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinación Homóloga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA