Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 195(7): 3490-6, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320246

RESUMEN

Dengue is a major public health problem globally. It is caused by four antigenically distinct serotypes of dengue virus (DENV1-4), and although serotype-specific and strongly neutralizing cross-reactive immune responses against the four DENV serotypes are thought to be protective, subneutralizing Abs can contribute to increased disease severity upon secondary infection with a different DENV serotype. Understanding the breadth of the immune response in natural DENV infections and in vaccinees is crucial for determining the correlates of protection or disease severity. Transformation of B cell populations to generate mAbs and ELISPOT assays have been used to determine B cell and Ab specificity to DENV; however, both methods have technical limitations. We therefore modified the conventional ELISPOT to develop a Quad-Color FluoroSpot to provide a means of examining B cell/Ab serotype specificity and cross-reactivity on a single-cell basis. Abs secreted by B cells are captured by an Fc-specific Ab on a filter plate. Subsequently, standardized concentrations of all four DENV serotypes are added to allow equal stoichiometry for Ag binding. After washing, the spots, representing individual B cells, are visualized using four fluorescently labeled DENV serotype-specific detection mAbs. This method can be used to better understand the breadth and magnitude of B cell responses following primary and secondary DENV infection or vaccination and their role as immune correlates of protection from subsequent DENV infections. Furthermore, the Quad-Color FluoroSpot assay can be applied to other diseases caused by multiple pathogen serotypes in which determining the serotype or subtype-specific B cell response is important.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Virales/inmunología , Virus del Dengue/clasificación , Virus del Dengue/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Aedes , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/análisis , Linfocitos B/inmunología , Células Cultivadas , Reacciones Cruzadas/inmunología , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/inmunología , Virus del Dengue/genética , Humanos , Análisis de la Célula Individual , Vacunación , Proteínas del Envoltorio Viral/inmunología
2.
Dtsch Med Wochenschr ; 149(17): 1021-1027, 2024 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-39146749

RESUMEN

Updating the vaccination recommendations against meningococci and pneumococci, in particular the introduction of the B vaccine as the standard vaccination for infants from January 2024 and the adaptation of the pneumococcal vaccination strategy for infants and adults aged 60 and over with the latest conjugate vaccines (PCV13, PCV15, PCV20).Emphasis on the need for rapid diagnostic lumbar puncture and simultaneous serum and cerebrospinal fluid analysis to increase diagnostic precision. The introduction of procalcitonin (PCT) in serum as an additional biomarker to differentiate between bacterial and viral meningitis.The use of multiplex PCR as a supplement, not a replacement, for standard diagnostics to speed up pathogen identification.Adaptation of antibiotic recommendations based on the current resistance situation, in particular for meningococcal meningitis, consideration of penicillin G only after resistance testing.Clarification of the areas and duration of use of dexamethasone in bacterial meningitis, particularly in pneumococcal meningitis and the controversial data situation in Listeria meningitis.New findings on the safe use of heparin in septic sinus thrombosis without increased risk of hemorrhage.


Asunto(s)
Infecciones Comunitarias Adquiridas , Meningoencefalitis , Humanos , Infecciones Comunitarias Adquiridas/diagnóstico , Meningoencefalitis/diagnóstico , Meningoencefalitis/microbiología , Antibacterianos/uso terapéutico , Lactante , Guías de Práctica Clínica como Asunto , Adulto , Persona de Mediana Edad , Meningitis Bacterianas/diagnóstico , Polipéptido alfa Relacionado con Calcitonina/sangre , Vacunas Meningococicas/uso terapéutico
3.
J Clin Invest ; 134(16)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-39145444

RESUMEN

A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.


Asunto(s)
Glucólisis , Inflamación , Neuronas , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Ratones , Humanos , Neuronas/metabolismo , Neuronas/patología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/genética , Ratones Noqueados , Transducción de Señal , Masculino , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología
4.
Science ; 384(6691): eabo7027, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574142

RESUMEN

Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.


Asunto(s)
Apoptosis , Interleucina-4 , Macrófagos , Fagocitosis , Esquistosomiasis mansoni , Animales , Ratones , Apoptosis/inmunología , Hepatocitos/inmunología , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/inmunología , Ratones Noqueados , Neutrófilos/inmunología , Fagocitosis/inmunología , Esquistosomiasis mansoni/genética , Esquistosomiasis mansoni/inmunología , Modelos Animales de Enfermedad
5.
Nat Rev Neurol ; 19(11): 688-709, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37857843

RESUMEN

Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.


Asunto(s)
Encefalopatías , Malaria Cerebral , Animales , Humanos , Malaria Cerebral/complicaciones , Malaria Cerebral/tratamiento farmacológico , Coma
6.
Front Immunol ; 13: 878320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874786

RESUMEN

Activated cytotoxic CD8+ T cells can selectively kill target cells in an antigen-specific manner. However, their prolonged activation often has detrimental effects on tissue homeostasis and function. Indeed, overwhelming cytotoxic activity of CD8+ T cells can drive immunopathology, and therefore, the extent and duration of CD8+ T cell effector function needs to be tightly regulated. One way to regulate CD8+ T cell function is their suppression through engagement of co-inhibitory molecules to their cognate ligands (e.g., LAG-3, PD-1, TIM-3, TIGIT and CTLA-4). During chronic antigen exposure, the expression of co-inhibitory molecules is associated with a loss of T cell function, termed T cell exhaustion and blockade of co-inhibitory pathways often restores T cell function. We addressed the effect of co-inhibitory molecule expression on CD8+ T cell function during acute antigen exposure using experimental malaria. To this end, we infected OT-I mice with a transgenic P. berghei ANKA strain that expresses ovalbumin (PbTG), which enables the characterization of antigen-specific CD8+ T cell responses. We then compared antigen-specific CD8+ T cell populations expressing different levels of the co-inhibitory molecules. High expression of LAG-3 correlated with high expression of PD-1, TIGIT, TIM-3 and CTLA-4. Contrary to what has been described during chronic antigen exposure, antigen-specific CD8+ T cells with the highest expression of LAG-3 appeared to be fully functional during acute malaria. We evaluated this by measuring IFN-γ, Granzyme B and Perforin production and confirmed the results by employing a newly developed T cell cytotoxicity assay. We found that LAG-3high CD8+ T cells are more cytotoxic than LAG-3low or activated but LAG-3neg CD8+ T cells. In conclusion, our data imply that expression of co-inhibitory molecules in acute malaria is not necessarily associated with functional exhaustion but may be associated with an overwhelming T cell activation. Taken together, our findings shed new light on the induction of co-inhibitory molecules during acute T cell activation with ramifications for immunomodulatory therapies targeting these molecules in acute infectious diseases.


Asunto(s)
Linfocitos T CD8-positivos , Malaria , Animales , Antígeno CTLA-4 , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Malaria/metabolismo , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
7.
Brain Commun ; 2(2): fcaa205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376990

RESUMEN

Neuropsychiatric complications associated with coronavirus disease 2019 caused by the Coronavirus SARS-CoV-2 (COVID-19) are increasingly appreciated. While most studies have focussed on severely affected individuals during acute infection, it remains unclear whether mild COVID-19 results in neurocognitive deficits in young patients. Here, we established a screening approach to detect cognitive deficiencies in post-COVID-19 patients. In this cross-sectional study, we recruited 18 mostly young patients 20-105 days (median, 85 days) after recovery from mild to moderate disease who visited our outpatient clinic for post-COVID-19 care. Notably, 14 (78%) patients reported sustained mild cognitive deficits and performed worse in the Modified Telephone Interview for Cognitive Status screening test for mild cognitive impairment compared to 10 age-matched healthy controls. While short-term memory, attention and concentration were particularly affected by COVID-19, screening results did not correlate with hospitalization, treatment, viremia or acute inflammation. Additionally, Modified Telephone Interview for Cognitive Status scores did not correlate with depressed mood or fatigue. In two severely affected patients, we excluded structural or other inflammatory causes by magnetic resonance imaging, serum and cerebrospinal fluid analyses. Together, our results demonstrate that sustained sub-clinical cognitive impairments might be a common complication after recovery from COVID-19 in young adults, regardless of clinical course that were unmasked by our diagnostic approach.

9.
J Mol Biol ; 426(6): 1148-60, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24316047

RESUMEN

Dengue is a major public health issue in tropical and subtropical regions worldwide. The four serotypes of dengue virus (DENV1-DENV4) are spread primarily by Aedes aegypti and Aedes albopictus mosquitoes, whose geographic range continues to expand. Humans are the only host for epidemic strains of DENV, and the virus has developed sophisticated mechanisms to evade human innate immune responses. The host cell's first line of defense begins with an intracellular signaling cascade resulting in production of interferon α/ß (IFN-α/ß), which promotes intracellular antiviral responses and helps initiates the adaptive response during the course of DENV infection. In response, DENV has developed numerous ways to subvert these intracellular antiviral responses and directly inhibit cellular signaling cascades. Specifically, DENV manipulates the unfolded protein response and autophagy to counter cellular stress and delay apoptosis. The DENV non-structural protein NS4B and subgenomic flavivirus RNA interfere with the RNA interference pathway by inhibiting the RNase Dicer. During heterotypic secondary DENV infection, subneutralizing antibodies can enable viral uptake through Fcγ receptors and down-regulate signaling cascades initiated via the pattern recognition receptors TLR-3 and MDA5/RIG-I, thus reducing the antiviral state of the cell. The DENV NS2B/3 protein cleaves human STING/MITA, interfering with induction of IFN-α/ß. Finally, DENV NS2A, NS4A, and NS4B complex together to block STAT1 phosphorylation, while NS5 binds and promotes degradation of human STAT2, thus preventing formation of the STAT1/STAT2 heterodimer and its transcriptional induction of interferon stimulating genes. Here, we discuss the host innate immune response to DENV and the mechanisms of immune evasion that DENV has developed to manipulate cellular antiviral responses.


Asunto(s)
Antivirales/uso terapéutico , Virus del Dengue/inmunología , Dengue/tratamiento farmacológico , Evasión Inmune/efectos de los fármacos , Inmunidad Innata/inmunología , Animales , Dengue/inmunología , Dengue/virología , Humanos , Evasión Inmune/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA