Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chaos ; 34(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805322

RESUMEN

The advection of passive scalars in time-independent two-dimensional incompressible fluid flows is an integrable Hamiltonian system. It becomes non-integrable if the corresponding stream function depends explicitly on time, allowing the possibility of chaotic advection of particles. We consider for a specific model (double gyre flow), a given number of exits through which advected particles can leak, without disturbing the flow itself. We investigate fractal escape basins in this problem and characterize fractality by computing the uncertainty exponent and basin entropy. Furthermore, we observe the presence of basin boundaries with points exhibiting the Wada property, i.e., boundary points that separate three or more escape basins.

2.
Entropy (Basel) ; 25(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37628172

RESUMEN

We consider open non-twist Hamiltonian systems represented by an area-preserving two-dimensional map describing incompressible planar flows in the reference frame of a propagating wave, and possessing exits through which map orbits can escape. The corresponding escape basins have a fractal nature that can be revealed by the so-called basin entropy, a novel concept developed to quantify final-state uncertainty in dynamical systems. Since the map considered violates locally the twist condition, there is a shearless barrier that prevents global chaotic transport. In this paper, we show that it is possible to determine the shearless barrier breakup by considering the variation in the escape basin entropy with a tunable parameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA