RESUMEN
BACKGROUND: Clotting, leading to thrombosis, requires interactions of coagulation factors with the membrane aminophospholipids (aPLs) phosphatidylserine and phosphatidylethanolamine. Atherosclerotic cardiovascular disease (ASCVD) is associated with elevated thrombotic risk, which is not fully preventable using current therapies. Currently, the contribution of aPL to thrombotic risk in ASCVD is not known. Here, the aPL composition of circulating membranes in ASCVD of varying severity will be characterized along with the contribution of external facing aPL to plasma thrombin generation in patient samples. METHODS: Thrombin generation was measured using a purified factor assay on platelet, leukocyte, and extracellular vesicles (EVs) from patients with acute coronary syndrome (n=24), stable coronary artery disease (n=18), and positive risk factor (n=23) and compared with healthy controls (n=24). aPL composition of resting/activated platelet and leukocytes and EV membranes was determined using lipidomics. RESULTS: External facing aPLs were detected on EVs, platelets, and leukocytes, elevating significantly following cell activation. Thrombin generation was higher on the surface of EVs from patients with acute coronary syndrome than healthy controls, along with increased circulating EV counts. Thrombin generation correlated significantly with externalized EV phosphatidylserine, plasma EV counts, and total EV membrane surface area. In contrast, aPL levels and thrombin generation from leukocytes and platelets were not impacted by disease, although circulating leukocyte counts were higher in patients. CONCLUSIONS: The aPL membrane of EV supports an elevated level of thrombin generation in patient plasma in ASCVD. Leukocytes may also play a role although the platelet membrane did not seem to contribute. Targeting EV formation/clearance and developing strategies to prevent the aPL surface of EV interacting with coagulation factors represents a novel antithrombotic target in ASCVD.
Asunto(s)
Plaquetas , Enfermedad de la Arteria Coronaria , Vesículas Extracelulares , Leucocitos , Trombina , Humanos , Trombina/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Plaquetas/metabolismo , Leucocitos/metabolismo , Enfermedad de la Arteria Coronaria/sangre , Estudios de Casos y Controles , Aterosclerosis/sangre , Lípidos de la Membrana/sangre , Lípidos de la Membrana/metabolismo , Fosfatidilserinas/sangre , Síndrome Coronario Agudo/sangre , Coagulación Sanguínea , LipidómicaRESUMEN
Aminophospholipids (aPL) such as phosphatidylserine are essential for supporting the activity of coagulation factors, circulating platelets, and blood cells. Phosphatidylthreonine (PT) is an aminophospholipid previously reported in eukaryotic parasites and animal cell cultures, but not yet in human tissues. Here, we evaluated whether PT is present in blood cells and characterized its ability to support coagulation. Several PT molecular species were detected in human blood, washed platelets, extracellular vesicles, and isolated leukocytes from healthy volunteers using liquid chromatography-tandem mass spectrometry. The ability of PT to support coagulation was demonstrated in vitro using biochemical and biophysical assays. In liposomes, PT supported prothrombinase activity in the presence and absence of phosphatidylserine. PT nanodiscs strongly bound FVa and lactadherin (nM affinity) but poorly bound prothrombin and FX, suggesting that PT supports prothrombinase through recruitment of FVa. PT liposomes bearing tissue factor poorly generated thrombin in platelet poor plasma, indicating that PT poorly supports extrinsic tenase activity. On platelet activation, PT is externalized and partially metabolized. Last, PT was significantly higher in platelets and extracellular vesicle from patients with coronary artery disease than in healthy controls. In summary, PT is present in human blood, binds FVa and lactadherin, supports coagulation in vitro through FVa binding, and is elevated in atherosclerotic vascular disease. Our studies reveal a new phospholipid subclass, that contributes to the procoagulant membrane, and may support thrombosis in patients at elevated risk.
Asunto(s)
Enfermedad de la Arteria Coronaria , Glicerofosfolípidos , Treonina/análogos & derivados , Tromboplastina , Animales , Humanos , Tromboplastina/metabolismo , Fosfatidilserinas/metabolismo , Liposomas/metabolismo , Plaquetas/metabolismo , Trombina/metabolismoRESUMEN
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.