Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(11): 1986-2005.e26, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35525246

RESUMEN

Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.


Asunto(s)
Inversión Cromosómica , Duplicaciones Segmentarias en el Genoma , Inversión Cromosómica/genética , Variaciones en el Número de Copia de ADN/genética , Genoma Humano , Genómica , Humanos
2.
Cell ; 184(18): 4612-4625.e14, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34352227

RESUMEN

The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15-20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East.


Asunto(s)
Genética de Población/historia , Genoma Humano , Animales , Cromosomas Humanos Y/genética , Bases de Datos Genéticas , Pool de Genes , Introgresión Genética , Geografía , Historia Antigua , Migración Humana , Humanos , Medio Oriente , Modelos Genéticos , Hombre de Neandertal/genética , Filogenia , Densidad de Población , Selección Genética , Análisis de Secuencia de ADN
3.
Nature ; 630(8016): 401-411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811727

RESUMEN

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Asunto(s)
Hominidae , Cromosoma X , Cromosoma Y , Animales , Femenino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/clasificación , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telómero/genética , Cromosoma X/genética , Cromosoma Y/genética , Evolución Molecular , Variaciones en el Número de Copia de ADN/genética , Humanos , Especies en Peligro de Extinción , Estándares de Referencia
4.
Nature ; 621(7978): 355-364, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612510

RESUMEN

The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.


Asunto(s)
Cromosomas Humanos Y , Evolución Molecular , Humanos , Masculino , Cromosomas Humanos Y/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Fenotipo , Eucromatina/genética , Seudogenes , Variación Genética/genética , Cromosomas Humanos X/genética , Regiones Pseudoautosómicas/genética
5.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35084493

RESUMEN

Joint phylogenetic analysis of ancient DNA (aDNA) with modern phylogenies is hampered by low sequence coverage and post-mortem deamination, often resulting in overconservative or incorrect assignment. We provide a new efficient likelihood-based workflow, pathPhynder, that takes advantage of all the polymorphic sites in the target sequence. This effectively evaluates the number of ancestral and derived alleles present on each branch and reports the most likely placement of an ancient sample in the phylogeny and a haplogroup assignment, together with alternatives and supporting evidence. To illustrate the application of pathPhynder, we show improved Y chromosome assignments for published aDNA sequences, using a newly compiled Y variation data set (120,908 markers from 2,014 samples) that significantly enhances Y haplogroup assignment for low coverage samples. We apply the method to all published male aDNA samples from Africa, giving new insights into ancient migrations and the relationships between ancient and modern populations. The same software can be used to place samples with large amounts of missing data into other large non-recombining phylogenies such as the mitochondrial tree.


Asunto(s)
Cromosomas Humanos Y , ADN Antiguo , Filogenia , Secuencia de Bases , ADN Antiguo/análisis , ADN Mitocondrial/genética , Haplotipos , Humanos , Funciones de Verosimilitud , Masculino , Análisis de Secuencia de ADN/métodos
6.
Hum Mol Genet ; 28(16): 2785-2798, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31108506

RESUMEN

Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.


Asunto(s)
Cromosomas Humanos Y , Variaciones en el Número de Copia de ADN , Evolución Molecular , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Hibridación Genómica Comparativa , Genoma Humano , Genómica/métodos , Humanos , Hibridación Fluorescente in Situ , Masculino , Familia de Multigenes , Mutación , Filogenia , Espermatozoides/metabolismo
7.
Hum Genet ; 140(2): 299-307, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32666166

RESUMEN

The genomes of present-day humans outside Africa originated almost entirely from a single out-migration ~ 50,000-70,000 years ago, followed by mixture with Neanderthals contributing ~ 2% to all non-Africans. However, the details of this initial migration remain poorly understood because no ancient DNA analyses are available from this key time period, and interpretation of present-day autosomal data is complicated due to subsequent population movements/reshaping. One locus, however, does retain male-specific information from this early period: the Y chromosome, where a detailed calibrated phylogeny has been constructed. Three present-day Y lineages were carried by the initial migration: the rare haplogroup D, the moderately rare C, and the very common FT lineage which now dominates most non-African populations. Here, we show that phylogenetic analyses of haplogroup C, D and FT sequences, including very rare deep-rooting lineages, together with phylogeographic analyses of ancient and present-day non-African Y chromosomes, all point to East/Southeast Asia as the origin 50,000-55,000 years ago of all known surviving non-African male lineages (apart from recent migrants). This observation contrasts with the expectation of a West Eurasian origin predicted by a simple model of expansion from a source near Africa, and can be interpreted as resulting from extensive genetic drift in the initial population or replacement of early western Y lineages from the east, thus informing and constraining models of the initial expansion.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , África , ADN/genética , Emigración e Inmigración , Genética de Población/métodos , Genoma Humano/genética , Haplotipos/genética , Humanos , Masculino , Filogenia , Filogeografía/métodos
8.
Arterioscler Thromb Vasc Biol ; 39(11): 2386-2401, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31644355

RESUMEN

OBJECTIVE: The male-specific region of the Y chromosome (MSY) remains one of the most unexplored regions of the genome. We sought to examine how the genetic variants of the MSY influence male susceptibility to coronary artery disease (CAD) and atherosclerosis. Approach and Results: Analysis of 129 133 men from UK Biobank revealed that only one of 7 common MSY haplogroups (haplogroup I1) was associated with CAD-carriers of haplogroup I1 had ≈11% increase in risk of CAD when compared with all other haplogroups combined (odds ratio, 1.11; 95% CI, 1.04-1.18; P=6.8×10-4). Targeted MSY sequencing uncovered 235 variants exclusive to this haplogroup. The haplogroup I1-specific variants showed 2.45- and 1.56-fold respective enrichment for promoter and enhancer chromatin states, in cells/tissues relevant to atherosclerosis, when compared with other MSY variants. Gene set enrichment analysis in CAD-relevant tissues showed that haplogroup I1 was associated with changes in pathways responsible for early and late stages of atherosclerosis development including defence against pathogens, immunity, oxidative phosphorylation, mitochondrial respiration, lipids, coagulation, and extracellular matrix remodeling. UTY was the only Y chromosome gene whose blood expression was associated with haplogroup I1. Experimental reduction of UTY expression in macrophages led to changes in expression of 59 pathways (28 of which overlapped with those associated with haplogroup I1) and a significant reduction in the immune costimulatory signal. CONCLUSIONS: Haplogroup I1 is enriched for regulatory chromatin variants in numerous cells of relevance to CAD and increases cardiovascular risk through proatherosclerotic reprogramming of the transcriptome, partly through UTY.


Asunto(s)
Cromosomas Humanos Y , Enfermedad de la Arteria Coronaria/genética , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Expresión Génica , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Macrófagos/metabolismo , Masculino , Antígenos de Histocompatibilidad Menor/genética , Proteínas Nucleares/genética , Filogenia , Factores de Riesgo , Células THP-1
9.
Am J Hum Genet ; 99(6): 1316-1324, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889059

RESUMEN

Understanding human genetic diversity in Africa is important for interpreting the evolution of all humans, yet vast regions in Africa, such as Chad, remain genetically poorly investigated. Here, we use genotype data from 480 samples from Chad, the Near East, and southern Europe, as well as whole-genome sequencing from 19 of them, to show that many populations today derive their genomes from ancient African-Eurasian admixtures. We found evidence of early Eurasian backflow to Africa in people speaking the unclassified isolate Laal language in southern Chad and estimate from linkage-disequilibrium decay that this occurred 4,750-7,200 years ago. It brought to Africa a Y chromosome lineage (R1b-V88) whose closest relatives are widespread in present-day Eurasia; we estimate from sequence data that the Chad R1b-V88 Y chromosomes coalesced 5,700-7,300 years ago. This migration could thus have originated among Near Eastern farmers during the African Humid Period. We also found that the previously documented Eurasian backflow into Africa, which occurred ∼3,000 years ago and was thought to be mostly limited to East Africa, had a more westward impact affecting populations in northern Chad, such as the Toubou, who have 20%-30% Eurasian ancestry today. We observed a decline in heterozygosity in admixed Africans and found that the Eurasian admixture can bias inferences on their coalescent history and confound genetic signals from adaptation and archaic introgression.


Asunto(s)
Variación Genética/genética , Migración Humana/historia , Animales , Asia/etnología , Chad , Etiopía , Europa (Continente)/etnología , Flujo Génico/genética , Genética de Población , Genoma Humano/genética , Heterocigoto , Historia Antigua , Humanos , Desequilibrio de Ligamiento , Medio Oriente , Hombre de Neandertal/genética , Polimorfismo de Nucleótido Simple/genética , Densidad de Población
10.
Genome Res ; 26(4): 427-39, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26883546

RESUMEN

The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale-multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8-15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times.


Asunto(s)
ADN Mitocondrial , Hominidae/clasificación , Hominidae/genética , Filogenia , Cromosoma Y , Distribución Animal , Animales , Femenino , Orden Génico , Genoma , Genómica , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Conducta Sexual Animal
11.
Hum Genet ; 137(1): 73-83, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29209947

RESUMEN

We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.


Asunto(s)
Cromosomas Humanos Y/genética , Variaciones en el Número de Copia de ADN , Conversión Génica , Humanos , Filogenia , ARN Largo no Codificante/genética , Análisis de Secuencia de ADN
12.
Hum Genet ; 136(5): 511-528, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28265767

RESUMEN

The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.


Asunto(s)
Hominidae/genética , Cromosoma Y/genética , Animales , Evolución Biológica , Cromosomas Humanos Y/genética , Variaciones en el Número de Copia de ADN , Genoma , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Mol Biol Evol ; 32(3): 661-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25468874

RESUMEN

Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes.


Asunto(s)
Cromosomas Humanos Y/genética , Polimorfismo de Nucleótido Simple/genética , Evolución Molecular , Proyecto Mapa de Haplotipos , Humanos , Masculino , Filogenia , Análisis de Secuencia de ADN
14.
PLoS Genet ; 9(7): e1003666, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935520

RESUMEN

The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages.


Asunto(s)
Cromosomas Humanos Y/genética , Evolución Molecular , Conversión Génica , Recombinación Genética , Animales , Inversión Cromosómica , Gorilla gorilla/genética , Humanos , Secuencias Invertidas Repetidas/genética , Masculino , Pan troglodytes/genética , Filogenia
15.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895457

RESUMEN

Segmental duplications (SDs) contribute significantly to human disease, evolution, and diversity yet have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies where the majority of SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms, we identify 173.2 Mbp of duplicated sequence (47.4 Mbp not present in the telomere-to-telomere reference) distinguishing fixed from structurally polymorphic events. We find that intrachromosomal SDs are among the most variable with rare events mapping near their progenitor sequences. African genomes harbor significantly more intrachromosomal SDs and are more likely to have recently duplicated gene families with higher copy number when compared to non-African samples. A comparison to a resource of 563 million full-length Iso-Seq reads identifies 201 novel, potentially protein-coding genes corresponding to these copy number polymorphic SDs.

16.
Genome Med ; 15(1): 35, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165454

RESUMEN

BACKGROUND: High sequence identity between segmental duplications (SDs) can facilitate copy number variants (CNVs) via non-allelic homologous recombination (NAHR). These CNVs are one of the fundamental causes of genomic disorders such as the 3q29 deletion syndrome (del3q29S). There are 21 protein-coding genes lost or gained as a result of such recurrent 1.6-Mbp deletions or duplications, respectively, in the 3q29 locus. While NAHR plays a role in CNV occurrence, the factors that increase the risk of NAHR at this particular locus are not well understood. METHODS: We employed an optical genome mapping technique to characterize the 3q29 locus in 161 unaffected individuals, 16 probands with del3q29S and their parents, and 2 probands with the 3q29 duplication syndrome (dup3q29S). Long-read sequencing-based haplotype resolved de novo assemblies from 44 unaffected individuals, and 1 trio was used for orthogonal validation of haplotypes and deletion breakpoints. RESULTS: In total, we discovered 34 haplotypes, of which 19 were novel haplotypes. Among these 19 novel haplotypes, 18 were detected in unaffected individuals, while 1 novel haplotype was detected on the parent-of-origin chromosome of a proband with the del3q29S. Phased assemblies from 44 unaffected individuals enabled the orthogonal validation of 20 haplotypes. In 89% (16/18) of the probands, breakpoints were confined to paralogous copies of a 20-kbp segment within the 3q29 SDs. In one del3q29S proband, the breakpoint was confined to a 374-bp region using long-read sequencing. Furthermore, we categorized del3q29S cases into three classes and dup3q29S cases into two classes based on breakpoints. Finally, we found no evidence of inversions in parent-of-origin chromosomes. CONCLUSIONS: We have generated the most comprehensive haplotype map for the 3q29 locus using unaffected individuals, probands with del3q29S or dup3q29S, and available parents, and also determined the deletion breakpoint to be within a 374-bp region in one proband with del3q29S. These results should provide a better understanding of the underlying genetic architecture that contributes to the etiology of del3q29S and dup3q29S.


Asunto(s)
Genómica , Duplicaciones Segmentarias en el Genoma , Humanos , Mapeo Cromosómico , Síndrome , Haplotipos , Variaciones en el Número de Copia de ADN
17.
Stem Cell Reports ; 18(5): 1061-1074, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37028423

RESUMEN

Perturbing expression is a powerful way to understand the role of individual genes, but can be challenging in important models. CRISPR-Cas screens in human induced pluripotent stem cells (iPSCs) are of limited efficiency due to DNA break-induced stress, while the less stressful silencing with an inactive Cas9 has been considered less effective so far. Here, we developed the dCas9-KRAB-MeCP2 fusion protein for screening in iPSCs from multiple donors. We found silencing in a 200 bp window around the transcription start site in polyclonal pools to be as effective as using wild-type Cas9 for identifying essential genes, but with much reduced cell numbers. Whole-genome screens to identify ARID1A-dependent dosage sensitivity revealed the PSMB2 gene, and enrichment of proteasome genes among the hits. This selective dependency was replicated with a proteasome inhibitor, indicating a targetable drug-gene interaction. Many more plausible targets in challenging cell models can be efficiently identified with our approach.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistemas CRISPR-Cas/genética , Genoma , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077089

RESUMEN

Apes possess two sex chromosomes-the male-specific Y and the X shared by males and females. The Y chromosome is crucial for male reproduction, with deletions linked to infertility. The X chromosome carries genes vital for reproduction and cognition. Variation in mating patterns and brain function among great apes suggests corresponding differences in their sex chromosome structure and evolution. However, due to their highly repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the state-of-the-art experimental and computational methods developed for the telomere-to-telomere (T2T) human genome, we produced gapless, complete assemblies of the X and Y chromosomes for five great apes (chimpanzee, bonobo, gorilla, Bornean and Sumatran orangutans) and a lesser ape, the siamang gibbon. These assemblies completely resolved ampliconic, palindromic, and satellite sequences, including the entire centromeres, allowing us to untangle the intricacies of ape sex chromosome evolution. We found that, compared to the X, ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements. This divergence on the Y arises from the accumulation of lineage-specific ampliconic regions and palindromes (which are shared more broadly among species on the X) and from the abundance of transposable elements and satellites (which have a lower representation on the X). Our analysis of Y chromosome genes revealed lineage-specific expansions of multi-copy gene families and signatures of purifying selection. In summary, the Y exhibits dynamic evolution, while the X is more stable. Finally, mapping short-read sequencing data from >100 great ape individuals revealed the patterns of diversity and selection on their sex chromosomes, demonstrating the utility of these reference assemblies for studies of great ape evolution. These complete sex chromosome assemblies are expected to further inform conservation genetics of nonhuman apes, all of which are endangered species.

19.
Hum Mutat ; 32(7): 806-14, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21520334

RESUMEN

Mutations in WNK1 and WNK4 cause familial hypertension, the Gordon syndrome. WNK1 and WNK4 conserved noncoding regions were targeted to polymorphism screening using DHPLC and DGGE. The scan identified an undescribed polymorphic AluYb8 insertion in WNK1 intron 10. Screening in primates revealed that this Alu-insertion has probably occurred in human lineage. Genotyping in 18 populations from Europe, Asia, and Africa (n = 854) indicated an expansion of the WNK1 AluYb8 bearing chromosomes out of Africa. The allele frequency in Sub-Saharan Africa was ~3.3 times lower than in other populations (4.8 vs. 15.8%; P = 9.7 × 10(-9) ). Meta-analysis across three European sample sets (n = 3,494; HYPEST, Estonians; BRIGHT, the British; CADCZ, Czech) detected significant association of the WNK1 AluYb8 insertion with blood pressure (BP; systolic BP, P = 4.03 × 10(-3) , effect 1.12; diastolic BP, P = 1.21 × 10(-2) , effect 0.67). Gender-stratified analysis revealed that this effect might be female-specific (n = 2,088; SBP, P = 1.99 × 10(-3) , effect 1.59; DBP P = 3.64 × 10(-4) , effect 1.23; resistant to Bonferroni correction), whereas no statistical support was identified for the association with male BP (n = 1,406). In leucocytes, the expressional proportions of the full-length WNK1 transcript and the splice-form skipping exon 11 were significantly shifted in AluYb8 carriers compared to noncarriers. The WNK1 AluYb8 insertion might affect human BP via altering the profile of alternatively spliced transcripts.


Asunto(s)
Elementos Alu/genética , Artrogriposis/genética , Presión Sanguínea/genética , Fisura del Paladar/genética , Pie Equinovaro/genética , Deformidades Congénitas de la Mano/genética , Hipertensión/genética , Proteínas Serina-Treonina Quinasas/genética , Adulto , África , Anciano , Empalme Alternativo/genética , Asia , Europa (Continente) , Exones , Femenino , Variación Genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Intrones , Masculino , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor , Mutagénesis Insercional , Polimorfismo Genético , Proteína Quinasa Deficiente en Lisina WNK 1 , Población Blanca/genética , Adulto Joven
20.
Elife ; 102021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33781384

RESUMEN

Male infertility is a prevalent condition, affecting 5-10% of men. So far, few genetic factors have been described as contributors to spermatogenic failure. Here, we report the first re-sequencing study of the Y-chromosomal Azoospermia Factor c (AZFc) region, combined with gene dosage analysis of the multicopy DAZ, BPY2, and CDYgenes and Y-haplogroup determination. In analysing 2324 Estonian men, we uncovered a novel structural variant as a high-penetrance risk factor for male infertility. The Y lineage R1a1-M458, reported at >20% frequency in several European populations, carries a fixed ~1.6 Mb r2/r3 inversion, destabilizing the AZFc region and predisposing to large recurrent microdeletions. Such complex rearrangements were significantly enriched among severe oligozoospermia cases. The carrier vs non-carrier risk for spermatogenic failure was increased 8.6-fold (p=6.0×10-4). This finding contributes to improved molecular diagnostics and clinical management of infertility. Carrier identification at young age will facilitate timely counselling and reproductive decision-making.


Asunto(s)
Azoospermia/genética , Inversión Cromosómica/genética , Eliminación de Gen , Espermatogénesis/genética , Adolescente , Adulto , Azoospermia/epidemiología , Estonia , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA