Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
EMBO J ; 30(1): 165-80, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21119615

RESUMEN

Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (∼2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD.


Asunto(s)
Encéfalo/metabolismo , Diacilglicerol Quinasa/análisis , Diacilglicerol Quinasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Animales , Encéfalo/ultraestructura , Línea Celular , Células Cultivadas , Diacilglicerol Quinasa/genética , Maleato de Dizocilpina/metabolismo , Eliminación de Gen , Expresión Génica , Humanos , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Neurotransmisores/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica
2.
EMBO J ; 28(8): 1170-9, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19229292

RESUMEN

Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKzeta is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD-95. Overexpression of DGKzeta in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD-95 binding. Conversely, DGKzeta knockdown reduces spine density. Mice deficient in DGKzeta expression show reduced spine density and excitatory synaptic transmission. Time-lapse imaging indicates that DGKzeta is required for spine maintenance but not formation. We propose that PSD-95 targets DGKzeta to synaptic DAG-producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.


Asunto(s)
Espinas Dendríticas/metabolismo , Diacilglicerol Quinasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isoenzimas/metabolismo , Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Espinas Dendríticas/ultraestructura , Diacilglicerol Quinasa/genética , Diglicéridos/metabolismo , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Isoenzimas/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/ultraestructura
3.
Hippocampus ; 22(5): 1018-26, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21069783

RESUMEN

Diacylglycerol (DAG) is an important signaling molecule at neuronal synapses. Generation of synaptic DAG is triggered by the activation of diverse surface receptors including N-methyl-D-aspartate (NMDA) receptors and metabotropic glutamate receptors. The action of DAG is terminated by enzymatic conversion of DAG to phosphatidic acid (PA) by DAG kinases (DGKs). DGKζ, one of many mammalian DGKs, is localized to synapses through direct interaction with the postsynaptic scaffolding protein PSD-95, and regulates dendritic spine maintenance by promoting DAG-to-PA conversion. However, a role for DGKζ in the regulation of synaptic plasticity has not been explored. We report here that Schaffer collateral-CA1 pyramidal synapses in the hippocampus of DGKζ-knockout (DGKζ(-/-) ) mice show enhanced long-term potentiation (LTP) and attenuated long-term depression (LTD). The attenuated LTD at DGKζ(-/-) synapses involves both NMDA receptors and metabotropic glutamate receptors. These changes in LTP and LTD were reversed by phospholipase C inhibition, which blocks DAG production. Similar reversals in both LTP and LTD were also induced by inhibition of protein kinase C, which acts downstream of DAG. These results suggest that DGKζ regulates hippocampal LTP and LTD by promoting DAG-to-PA conversion, and establish that phospholipase C and protein kinase C lie upstream and downstream, respectively, of DGKζ-dependent regulation of hippocampal LTP and LTD.


Asunto(s)
Región CA1 Hipocampal/fisiología , Diacilglicerol Quinasa/metabolismo , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Animales , Región CA1 Hipocampal/enzimología , Espinas Dendríticas/enzimología , Diacilglicerol Quinasa/genética , Diglicéridos/metabolismo , Homólogo 4 de la Proteína Discs Large , Estrenos/farmacología , Guanilato-Quinasas/metabolismo , Indoles/farmacología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Ácidos Fosfatidicos/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Células Piramidales/enzimología , Células Piramidales/fisiología , Pirrolidinonas/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Fosfolipasas de Tipo C/antagonistas & inhibidores
4.
PLoS Biol ; 7(9): e1000187, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19823667

RESUMEN

Long-term depression (LTD) is a long-lasting activity-dependent decrease in synaptic strength. NMDA receptor (NMDAR)-dependent LTD, an extensively studied form of LTD, involves the endocytosis of AMPA receptors (AMPARs) via protein dephosphorylation, but the underlying mechanism has remained unclear. We show here that a regulated interaction of the endocytic adaptor RalBP1 with two synaptic proteins, the small GTPase RalA and the postsynaptic scaffolding protein PSD-95, controls NMDAR-dependent AMPAR endocytosis during LTD. NMDAR activation stimulates RalA, which binds and translocates widespread RalBP1 to synapses. In addition, NMDAR activation dephosphorylates RalBP1, promoting the interaction of RalBP1 with PSD-95. These two regulated interactions are required for NMDAR-dependent AMPAR endocytosis and LTD and are sufficient to induce AMPAR endocytosis in the absence of NMDAR activation. RalA in the basal state, however, maintains surface AMPARs. We propose that NMDAR activation brings RalBP1 close to PSD-95 to promote the interaction of RalBP1-associated endocytic proteins with PSD-95-associated AMPARs. This suggests that scaffolding proteins at specialized cellular junctions can switch their function from maintenance to endocytosis of interacting membrane proteins in a regulated manner.


Asunto(s)
Endocitosis/fisiología , Proteínas Activadoras de GTPasa/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Proteínas de Unión al GTP ral/fisiología , Animales , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fosforilación , Ratas , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Unión al GTP ral/genética
5.
J Neurosci ; 30(45): 15102-12, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068316

RESUMEN

PSD-95 (postsynaptic density-95) is thought to play important roles in the regulation of dendritic spines and excitatory synapses, but the underlying mechanisms have not been fully elucidated. TANC1 is a PSD-95-interacting synaptic protein that contains multiple domains for protein-protein interactions but whose function is not well understood. In the present study, we provide evidence that TANC1 and its close relative TANC2 regulate dendritic spines and excitatory synapses. Overexpression of TANC1 and TANC2 in cultured neurons increases the density of dendritic spines and excitatory synapses in a manner that requires the PDZ (PSD-95/Dlg/ZO-1)-binding C termini of TANC proteins. TANC1-deficient mice exhibit reduced spine density in the CA3 region of the hippocampus, but not in the CA1 or dentate gyrus regions, and show impaired spatial memory. TANC2 deficiency, however, causes embryonic lethality. These results suggest that TANC1 is important for dendritic spine maintenance and spatial memory, and implicate TANC2 in embryonic development.


Asunto(s)
Venenos de Crotálidos/metabolismo , Espinas Dendríticas/metabolismo , Desarrollo Embrionario/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Memoria/fisiología , Percepción Espacial/fisiología , Animales , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica , Neuronas/citología , Neuronas/metabolismo , Ratas , Sinapsis/metabolismo
6.
J Neurosci ; 30(42): 14134-44, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20962234

RESUMEN

Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimer's disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions.


Asunto(s)
Proteínas Activadoras de GTPasa/biosíntesis , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteína de Unión al GTP rac1/biosíntesis , Animales , Biolística , Células Cultivadas , Espinas Dendríticas/metabolismo , Electrofisiología , Proteínas Activadoras de GTPasa/genética , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/fisiología , Transmisión Sináptica/fisiología , Transfección , Proteína de Unión al GTP rac1/genética
7.
J Neurosci ; 29(5): 1586-95, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19193906

RESUMEN

IRSp53 is an adaptor protein that acts downstream of Rac and Cdc42 small GTPases and is implicated in the regulation of membrane deformation and actin filament assembly. In neurons, IRSp53 is an abundant postsynaptic protein and regulates actin-rich dendritic spines; however, its in vivo functions have not been explored. We characterized transgenic mice deficient of IRSp53 expression. Unexpectedly, IRSp53(-/-) neurons do not show significant changes in the density and ultrastructural morphologies of dendritic spines. Instead, IRSp53(-/-) neurons exhibit reduced AMPA/NMDA ratio of excitatory synaptic transmission and a selective increase in NMDA but not AMPA receptor-mediated transmission. IRSp53(-/-) hippocampal slices show a markedly enhanced long-term potentiation (LTP) with no changes in long-term depression. LTP-inducing theta burst stimulation enhances NMDA receptor-mediated transmission. Spatial learning and novel object recognition are impaired in IRSp53(-/-) mice. These results suggest that IRSp53 is involved in the regulation of NMDA receptor-mediated excitatory synaptic transmission, LTP, and learning and memory behaviors.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Trastornos de la Memoria/metabolismo , Memoria/fisiología , Proteínas del Tejido Nervioso/deficiencia , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Animales , Aprendizaje/fisiología , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA