Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38142281

RESUMEN

Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Esquizofrenia , Humanos , Trastorno Bipolar/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
2.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38741271

RESUMEN

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Asunto(s)
Infartos del Tronco Encefálico , Cerebelo , Imagen por Resonancia Magnética , Vías Nerviosas , Puente , Humanos , Masculino , Femenino , Persona de Mediana Edad , Cerebelo/fisiopatología , Cerebelo/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Puente/diagnóstico por imagen , Puente/fisiopatología , Infartos del Tronco Encefálico/fisiopatología , Infartos del Tronco Encefálico/diagnóstico por imagen , Anciano , Adulto , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
3.
Psychol Med ; 54(2): 350-358, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37310178

RESUMEN

BACKGROUND: Obsessive-compulsive disorder (OCD) is a chronic mental illness characterized by abnormal functional connectivity among distributed brain regions. Previous studies have primarily focused on undirected functional connectivity and rarely reported from network perspective. METHODS: To better understand between or within-network connectivities of OCD, effective connectivity (EC) of a large-scale network is assessed by spectral dynamic causal modeling with eight key regions of interests from default mode (DMN), salience (SN), frontoparietal (FPN) and cerebellum networks, based on large sample size including 100 OCD patients and 120 healthy controls (HCs). Parametric empirical Bayes (PEB) framework was used to identify the difference between the two groups. We further analyzed the relationship between connections and Yale-Brown Obsessive Compulsive Scale (Y-BOCS). RESULTS: OCD and HCs shared some similarities of inter- and intra-network patterns in the resting state. Relative to HCs, patients showed increased ECs from left anterior insula (LAI) to medial prefrontal cortex, right anterior insula (RAI) to left dorsolateral prefrontal cortex (L-DLPFC), right dorsolateral prefrontal cortex (R-DLPFC) to cerebellum anterior lobe (CA), CA to posterior cingulate cortex (PCC) and to anterior cingulate cortex (ACC). Moreover, weaker from LAI to L-DLPFC, RAI to ACC, and the self-connection of R-DLPFC. Connections from ACC to CA and from L-DLPFC to PCC were positively correlated with compulsion and obsession scores (r = 0.209, p = 0.037; r = 0.199, p = 0.047, uncorrected). CONCLUSIONS: Our study revealed dysregulation among DMN, SN, FPN, and cerebellum in OCD, emphasizing the role of these four networks in achieving top-down control for goal-directed behavior. There existed a top-down disruption among these networks, constituting the pathophysiological and clinical basis.


Asunto(s)
Mapeo Encefálico , Trastorno Obsesivo Compulsivo , Humanos , Teorema de Bayes , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
4.
Psychol Med ; 54(7): 1318-1328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37947212

RESUMEN

BACKGROUND: There is growing evidence that gray matter atrophy is constrained by normal brain network (or connectome) architecture in neuropsychiatric disorders. However, whether this finding holds true in individuals with depression remains unknown. In this study, we aimed to investigate the association between gray matter atrophy and normal connectome architecture at individual level in depression. METHODS: In this study, 297 patients with depression and 256 healthy controls (HCs) from two independent Chinese dataset were included: a discovery dataset (105 never-treated first-episode patients and matched 130 HCs) and a replication dataset (106 patients and matched 126 HCs). For each patient, individualized regional atrophy was assessed using normative model and brain regions whose structural connectome profiles in HCs most resembled the atrophy patterns were identified as putative epicenters using a backfoward stepwise regression analysis. RESULTS: In general, the structural connectome architecture of the identified disease epicenters significantly explained 44% (±16%) variance of gray matter atrophy. While patients with depression demonstrated tremendous interindividual variations in the number and distribution of disease epicenters, several disease epicenters with higher participation coefficient than randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus were significantly shared by depression. Other brain regions with strong structural connections to the disease epicenters exhibited greater vulnerability. In addition, the association between connectome and gray matter atrophy uncovered two distinct subgroups with different ages of onset. CONCLUSIONS: These results suggest that gray matter atrophy is constrained by structural brain connectome and elucidate the possible pathological progression in depression.


Asunto(s)
Depresión , Sustancia Gris , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Depresión/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Atrofia
5.
J Magn Reson Imaging ; 59(3): 987-995, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37318377

RESUMEN

BACKGROUND: Numerous studies have indicated altered temporal features of the brain function in Parkinson's disease (PD), and the autocorrelation magnitude of intrinsic neural signals, called intrinsic neural timescales, were often applied to estimate how long neural information stored in local brain areas. However, it is unclear whether PD patients at different disease stages exhibit abnormal timescales accompanied with abnormal gray matter volume (GMV). PURPOSE: To assess the intrinsic timescale and GMV in PD. STUDY TYPE: Prospective. POPULATION: 74 idiopathic PD patients (44 early stage (PD-ES) and 30 late stage (PD-LS), as determined by the Hoehn and Yahr (HY) severity classification scale), and 73 healthy controls (HC). FIELD STRENGTH/SEQUENCE: 3.0 T MRI scanner; magnetization prepared rapid acquisition gradient echo and echo planar imaging sequences. ASSESSMENT: The timescales were estimated by using the autocorrelation magnitude of neural signals. Voxel-based morphometry was performed to calculate GMV in the whole brain. Severity of motor symptoms and cognitive impairments were assessed using the unified PD rating scale, the HY scale, the Montreal cognitive assessment, and the mini-mental state examination. STATISTICAL TEST: Analysis of variance; two-sample t-test; Spearman rank correlation analysis; Mann-Whitney U test; Kruskal-Wallis' H test. A P value <0.05 was considered statistically significant. RESULTS: The PD group had significantly abnormal intrinsic timescales in the sensorimotor, visual, and cognitive-related areas, which correlated with the symptom severity (ρ = -0.265, P = 0.022) and GMV (ρ = 0.254, P = 0.029). Compared to the HC group, the PD-ES group had significantly longer timescales in anterior cortical regions, whereas the PD-LS group had significantly shorter timescales in posterior cortical regions. CONCLUSION: This study suggested that PD patients have abnormal timescales in multisystem and distinct patterns of timescales and GMV in cerebral cortex at different disease stages. This may provide new insights for the neural substrate of PD. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Sustancia Gris , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Prospectivos , Corteza Cerebral , Imagen por Resonancia Magnética/métodos
6.
Epilepsy Behav ; 157: 109751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820678

RESUMEN

BACKGROUND: Hippocampal sclerosis (HS) is a prevalent cause of temporal lobe epilepsy (TLE). However, up to 30% of individuals with TLE present negative magnetic resonance imaging (MRI) findings. A comprehensive grasp of the similarities and differences in brain activity among distinct TLE subtypes holds significant clinical and scientific importance. OBJECTIVE: To comprehensively examine the similarities and differences between TLE with HS (TLE-HS) and MRI-negative TLE (TLE-N) regarding static and dynamic abnormalities in spontaneous brain activity (SBA). Furthermore, we aimed to determine whether these alterations correlate with epilepsy duration and cognition, and to determine a potential differential diagnostic index for clinical utility. METHODS: We measured 12 SBA metrics in 38 patients with TLE-HS, 51 with TLE-N, and 53 healthy volunteers. Voxel-wise analysis of variance (ANOVA) and post-hoc comparisons were employed to compare these metrics. The six static metrics included amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), degree centrality (DC), and global signal correlation (GSCorr). Additionally, six corresponding dynamic metrics were assessed: dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr (dGSCorr). Receiver operating characteristic (ROC) curve analysis of abnormal indices was employed. Spearman correlation analyses were also conducted to examine the relationship between the abnormal indices, epilepsy duration and cognition scores. RESULTS: Both TLE-HS and TLE-N presented as extensive neural network disorders, sharing similar patterns of SBA alterations. The regions with increased fALFF, dALFF, and dfALFF levels were predominantly observed in the mesial temporal lobe, thalamus, basal ganglia, pons, and cerebellum, forming a previously proposed mesial temporal epilepsy network. Conversely, decreased SBA metrics (fALFF, ReHo, dReHo, DC, GSCorr, and VMHC) consistently appeared in the lateral temporal lobe ipsilateral to the epileptic foci. Notably, SBA alterations were more obvious in patients with TLE-HS than in those with TLE-N. Additionally, patients with TLE-HS exhibited reduced VMHC in both mesial and lateral temporal lobes compared with patients with TLE-N, with the hippocampus displaying moderate discriminatory power (AUC = 0.759). Correlation analysis suggested that alterations in SBA indicators may be associated with epilepsy duration and cognitive scores. CONCLUSIONS: The simultaneous use of static and dynamic SBA metrics provides evidence supporting the characterisation of both TLE-HS and TLE-N as complex network diseases, facilitating the exploration of mechanisms underlying epileptic activity and cognitive impairment. Overall, SBA abnormality patterns were generally similar between the TLE-HS and TLE-N groups, encompassing networks related to TLE and auditory and occipital visual functions. These changes were more pronounced in the TLE-HS group, particularly within the mesial and lateral temporal lobes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Imagen por Resonancia Magnética , Esclerosis , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/patología , Femenino , Masculino , Adulto , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Persona de Mediana Edad , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico , Pruebas Neuropsicológicas , Esclerosis del Hipocampo
7.
Cereb Cortex ; 33(5): 1659-1668, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35470393

RESUMEN

BACKGROUND: The high heterogeneity of obsessive-compulsive disorder (OCD) denies attempts of traditional case-control studies to derive neuroimaging biomarkers indicative of precision diagnosis and treatment. METHODS: To handle the heterogeneity, we uncovered subject-level altered structural covariance by adopting individualized differential structural covariance network (IDSCN) analysis. The IDSCN measures how structural covariance edges in a patient deviated from those in matched healthy controls (HCs) yielding subject-level differential edges. One hundred patients with OCD and 106 HCs were recruited and whose T1-weighted anatomical images were acquired. We obtained individualized differential edges and then clustered patients into subtypes based on these edges. RESULTS: Patients presented tremendously low overlapped altered edges while frequently shared altered edges within subcortical-cerebellum network. Two robust neuroanatomical subtypes were identified. Subtype 1 presented distributed altered edges while subtype 2 presented decreased edges between default mode network and motor network compared with HCs. Altered edges in subtype 1 predicted the total Yale-Brown Obsessive Compulsive Scale score while that in subtype 2 could not. CONCLUSIONS: We depict individualized structural covariance aberrance and identify that altered connections within subcortical-cerebellum network are shared by most patients with OCD. These 2 subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of OCD.


Asunto(s)
Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Cerebelo , Estudios de Casos y Controles , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
8.
Cereb Cortex ; 33(13): 8667-8678, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37150510

RESUMEN

Obsessive-compulsive disorder (OCD) is a spectrum disorder with high interindividual heterogeneity. We propose a comprehensible framework integrating normative model and non-negative matrix factorization (NMF) to quantitatively estimate the neuroanatomical heterogeneity of OCD from a dimensional perspective. T1-weighted magnetic resonance images of 98 first-episode untreated patients with OCD and matched healthy controls (HCs, n = 130) were acquired. We derived individualized differences in gray matter morphometry using normative model and parsed them into latent disease factors using NMF. Four robust disease factors were identified. Each patient expressed multiple factors and exhibited a unique factor composition. Factor compositions of patients were significantly correlated with severity of symptom, age of onset, illness duration, and exhibited sex differences, capturing sources of clinical heterogeneity. In addition, the group-level morphological differences obtained with two-sample t test could be quantitatively derived from the identified disease factors, reconciling the group-level and subject-level findings in neuroimaging studies. Finally, we uncovered two distinct subtypes with opposite morphological differences compared with HCs from factor compositions. Our findings suggest that morphological differences of individuals with OCD are the unique combination of distinct neuroanatomical patterns. The proposed framework quantitatively estimating neuroanatomical heterogeneity paves the way for precision medicine in OCD.


Asunto(s)
Encéfalo , Trastorno Obsesivo Compulsivo , Humanos , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
9.
Addict Biol ; 29(6): e13398, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38899438

RESUMEN

A growing body of evidence indicates the existence of abnormal local and long-range functional connection patterns in patients with alcohol use disorder (AUD). However, it has yet to be established whether AUD is associated with abnormal interhemispheric and intrahemispheric functional connection patterns. In the present study, we analysed resting-state functional magnetic resonance imaging data from 55 individuals with AUD and 32 healthy nonalcohol users. For each subject, whole-brain functional connectivity density (FCD) was decomposed into ipsilateral and contralateral parts. Correlation analysis was performed between abnormal FCD and a range of clinical measurements in the AUD group. Compared with healthy controls, the AUD group exhibited a reduced global FCD in the anterior and middle cingulate gyri, prefrontal cortex and thalamus, along with an enhanced global FCD in the temporal, parietal and occipital cortices. Abnormal interhemispheric and intrahemispheric FCD patterns were also detected in the AUD group. Furthermore, abnormal global, contralateral and ipsilateral FCD data were correlated with the mean amount of pure alcohol and the severity of alcohol addiction in the AUD group. Collectively, our findings indicate that global, interhemispheric and intrahemispheric FCD may represent a robust method to detect abnormal functional connection patterns in AUD; this may help us to identify the neural substrates and therapeutic targets of AUD.


Asunto(s)
Alcoholismo , Encéfalo , Imagen por Resonancia Magnética , Humanos , Masculino , Alcoholismo/fisiopatología , Alcoholismo/diagnóstico por imagen , Adulto , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Estudios de Casos y Controles , Giro del Cíngulo/fisiopatología , Giro del Cíngulo/diagnóstico por imagen , Mapeo Encefálico/métodos , Adulto Joven
10.
Hum Brain Mapp ; 44(18): 6429-6438, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37909379

RESUMEN

This study aims to explore the changes of the aspartate (Asp) level in the medial-prefrontal cortex (mPFC) of subjects with nicotine addiction (nicotine addicts [NAs]) using the J-edited 1 H MR spectroscopy (MRS), which may provide a positive imaging evidence for intervention of NA. From March to August 2022, 45 males aged 40-60 years old were recruited from Henan Province, including 21 in NA and 24 in nonsmoker groups. All subjects underwent routine magnetic resonance imaging (MRI) and J-edited MRS scans on a 3.0 T MRI scanner. The Asp level in mPFC was quantified with reference to the total creatine (Asp/Cr) and water (Aspwater-corr , with correction of the brain tissue composition) signals, respectively. Two-tailed independent samples t-test was used to analyze the differences in levels of Asp and other coquantified metabolites (including total N-acetylaspartate [tNAA], total cholinine [tCho], total creatine [tCr], and myo-Inositol [mI]) between the two groups. Finally, the correlations of the Asp level with clinical characteristic assessment scales were performed using the Spearman criteria. Compared with the control group (n = 22), NAs (n = 18) had higher levels of Asp (Asp/Cr: p = .005; Aspwater-corr : p = .004) in the mPFC, and the level of Asp was positively correlated with the daily smoking amount (Asp/Cr: p < .001; Aspwater-corr : p = .004). No significant correlation was found between the level of Asp and the years of nicotine use, Fagerstrom Nicotine Dependence (FTND), Russell Reason for Smoking Questionnaire (RRSQ), or Barratt Impulsivity Scale (BIS-11) score. The elevated Asp level was observed in mPFC of NAs in contrast to nonsmokers, and the Asp level was positively correlated with the amount of daily smoking, which suggests that nicotine addiction may result in elevated Asp metabolism in the human brain.


Asunto(s)
Nicotina , Tabaquismo , Masculino , Humanos , Adulto , Persona de Mediana Edad , Nicotina/metabolismo , Ácido Aspártico/metabolismo , Tabaquismo/diagnóstico por imagen , Creatina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Inositol/metabolismo , Corteza Prefrontal/metabolismo , Agua/metabolismo
11.
J Neurosci Res ; 101(2): 232-244, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333937

RESUMEN

Tobacco smoking and overweight lead to adverse health effects, which remain an important public health problem worldwide. Researches indicate overlapping pathophysiology may contribute to tobacco use disorder (TUD) and overweight, but the neurobiological interaction mechanism between the two factors is still unclear. This study used a mixed sample design, including the following four groups: (i) overweight long-term smokers (n = 24, age = 31.80 ± 5.70, cigarettes/day = 20.50 ± 7.89); (ii) normal weight smokers (n = 28, age = 31.29 ± 5.56, cigarettes/day = 16.11 ± 8.35); (iii) overweight nonsmokers (n = 19, age = 33.05 ± 5.60), and (iv) normal weight nonsmokers (n = 28, age = 31.68 ± 6.57), a total of 99 male subjects. All subjects underwent T1-weighted high-resolution MRI. We used voxel-based morphometry to compare gray matter volume (GMV) among the four groups. Then, JuSpace toolbox was used for cross-modal correlations of MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying the two factors. Our results illustrate a significant antagonistic interaction between TUD and weight status in left dorsolateral prefrontal cortex (DLPFC), and a quadratic effect of BMI on DLPFC GMV. For main effect of TUD, long-term smokers were associated with greater GMV in bilateral OFC compared with nonsmokers irrespective of weight status, and such alteration is negatively associated with pack-year and FTND scores. Furthermore, we also found GMV changes related to TUD and overweight are associated with µ-opioid receptor system and TUD-related GMV alterations are associated with noradrenaline transporter maps. This study sheds light on novel multimodal neuromechanistic about the relationship between TUD and overweight, which possibly provides hints into future treatment for the special population of comorbid TUD and overweight.


Asunto(s)
Tabaquismo , Masculino , Humanos , Adulto , Tabaquismo/diagnóstico por imagen , Neurobiología , Encéfalo/diagnóstico por imagen
12.
Psychol Med ; 53(11): 5312-5321, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35959558

RESUMEN

BACKGROUND: Elucidating individual aberrance is a critical first step toward precision medicine for heterogeneous disorders such as depression. The neuropathology of depression is related to abnormal inter-regional structural covariance indicating a brain maturational disruption. However, most studies focus on group-level structural covariance aberrance and ignore the interindividual heterogeneity. For that reason, we aimed to identify individualized structural covariance aberrance with the help of individualized differential structural covariance network (IDSCN) analysis. METHODS: T1-weighted anatomical images of 195 first-episode untreated patients with depression and matched healthy controls (n = 78) were acquired. We obtained IDSCN for each patient and identified subtypes of depression based on shared differential edges. RESULTS: As a result, patients with depression demonstrated tremendous heterogeneity in the distribution of differential structural covariance edges. Despite this heterogeneity, altered edges within subcortical-cerebellum network were often shared by most of the patients. Two robust neuroanatomical subtypes were identified. Specifically, patients in subtype 1 often shared decreased motor network-related edges. Patients in subtype 2 often shared decreased subcortical-cerebellum network-related edges. Functional annotation further revealed that differential edges in subtype 2 were mainly implicated in reward/motivation-related functional terms. CONCLUSIONS: In conclusion, we investigated individualized differential structural covariance and identified that decreased edges within subcortical-cerebellum network are often shared by patients with depression. The identified two subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of depression.


Asunto(s)
Depresión , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Depresión/diagnóstico por imagen , Cerebelo , Psicoterapia , Motivación , Sustancia Gris/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
13.
Psychol Med ; 53(5): 2146-2155, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34583785

RESUMEN

BACKGROUND: As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown. METHODS: To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis. RESULTS: Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus. CONCLUSIONS: Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.


Asunto(s)
Encefalopatías , Depresión , Humanos , Depresión/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Corteza Cerebral
14.
Psychol Med ; : 1-12, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876493

RESUMEN

BACKGROUND: Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders. METHODS: Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed. RESULTS: Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network. CONCLUSIONS: These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.

15.
Epilepsy Behav ; 144: 109247, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267843

RESUMEN

OBJECTIVE: To investigate abnormalities in topological properties in unilateral temporal lobe epilepsy (TLE) with hippocampal sclerosis and their correlations with cognitive functions. METHODS: Thirty-eight patients with TLE and 19 age- and sex-matched healthy controls (HCs) were enrolled in this research and underwent resting-state functional magnetic resonance imaging (fMRI) examinations. Whole-brain functional networks of participants were constructed based on the fMRI data. Topological characteristics of the functional network were compared between patients with left and right TLE and HCs. Correlations between altered topological properties and cognitive measurements were explored. RESULTS: Compared with the HCs, patients with left TLE showed decreased clustering coefficient, global efficiency, and local efficiency (Eloc), and patients with right TLE showed decreased Eloc. We found altered nodal centralities in six regions related to the basal ganglia (BG) network or default mode network (DMN) in patients with left TLE and those in three regions related to reward/emotion network or ventral attention network in patients with right TLE. Patients with right TLE showed higher integration (reduced nodal shortest path length) in four regions related to the DMN and lower segregation (reduced nodal local efficiency and nodal clustering coefficient) in the right middle temporal gyrus. When comparing left TLE with right TLE, no significant differences were detected in global parameters, but the nodal centralities in the left parahippocampal gyrus and the left pallidum were decreased in left TLE. The Eloc and several nodal parameters were significantly correlated with memory functions, duration, national hospital seizure severity scale (NHS3), or antiseizure medications (ASMs) in patients with TLE. CONCLUSIONS: The topological properties of whole-brain functional networks were disrupted in TLE. Networks of left TLE were characterized by lower efficiency; right TLE was preserved in global efficiency but disrupted in fault tolerance. Several nodes with abnormal topological centrality in the basal ganglia network beyond the epileptogenic focus in the left TLE were not found in the right TLE. Right TLE had some nodes with reduced shortest path length in regions of the DMN as compensation. These findings provide new insights into the effect of lateralization on TLE and help us to understand the cognitive impairment of patients with TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Cognición , Lóbulo Temporal , Convulsiones , Imagen por Resonancia Magnética/métodos
16.
Neuroradiology ; 65(1): 157-166, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35953566

RESUMEN

PURPOSE: To investigate the abnormal time-varying local spontaneous brain activity in patients with high myopia (HM) on the basis of the dynamic amplitude of low-frequency fluctuations (dALFF) approach. METHODS: Age and gender matching were performed based on resting-state functional magnetic resonance imaging data from 86 HM patients and 87 healthy controls (HCs). Local spontaneous brain activities were evaluated using the time-varying dALFF method. Support vector machine combined with the radial basis function kernel was used for pattern classification analysis. RESULTS: Inter-group comparison between HCs and HM patients has demonstrated that dALFF variability in the left inferior frontal gyrus (orbital part), left lingual gyrus, right anterior cingulate and paracingulate gyri, and right calcarine fissure and surrounding cortex was decreased in HM patients, while increased in the left thalamus, left paracentral lobule, and left inferior parietal (except supramarginal and angular gyri). Pattern classification between HM patients and HCs displayed a classification accuracy of 85.5%. CONCLUSION: In this study, the findings mentioned above have suggested the association between local brain activities of HM patients and abnormal variability in brain regions performing visual sensorimotor and attentional control functions. Several useful information has been provided to elucidate the mechanism-related alterations of the myopic nervous system. In addition, the significant role of abnormal dALFF variability has been highlighted to achieve an in-depth comprehension of the pathological alterations and neuroimaging mechanisms in the field of HM.


Asunto(s)
Imagen por Resonancia Magnética , Miopía , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos , Lóbulo Occipital , Miopía/diagnóstico por imagen , Miopía/patología
17.
Cereb Cortex ; 32(6): 1307-1317, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34416760

RESUMEN

Literatures have reported considerable heterogeneity with atypical functional connectivity (FC) pattern of psychiatric disorders. However, traditional statistical methods are hard to explore this heterogeneity pattern. We proposed a "brain dimension" method to describe the atypical FC patterns of major depressive disorder and bipolar disorder (BD). The approach was firstly applied to a simulation dataset. It was then utilized to a real resting-state functional magnetic resonance imaging dataset of 47 individuals with major depressive disorder, 32 individuals with BD, and 52 well matched health controls. Our method showed a better ability to extract the FC dimensions than traditional methods. The results of the real dataset revealed atypical FC dimensions for major depressive disorder and BD. Especially, an atypical FC dimension which exhibited decreased FC strength of thalamus and basal ganglia was found with higher severity level of individuals with BD than the ones with major depressive disorder. This study provided a novel "brain dimension" method to view the atypical FC patterns of major depressive disorder and BD and revealed shared and specific atypical FC patterns between major depressive disorder and BD.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos
18.
BMC Psychiatry ; 23(1): 578, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558974

RESUMEN

BACKGROUND: Studies have revealed that intrinsic neural activity varies over time. However, the temporal variability of brain local connectivity in internet gaming disorder (IGD) remains unknown. The purpose of this study was to explore the alterations of static and dynamic intrinsic brain local connectivity in IGD and whether the changes were associated with clinical characteristics of IGD. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 36 individuals with IGD (IGDs) and 44 healthy controls (HCs) matched for age, gender and years of education. The static regional homogeneity (sReHo) and dynamic ReHo (dReHo) were calculated and compared between two groups to detect the alterations of intrinsic brain local connectivity in IGD. The Internet Addiction Test (IAT) and the Pittsburgh Sleep Quality Index (PSQI) were used to evaluate the severity of online gaming addiction and sleep quality, respectively. Pearson correlation analysis was used to evaluate the relationship between brain regions with altered sReHo and dReHo and IAT and PSQI scores. Receiver operating characteristic (ROC) curve analysis was used to reveal the potential capacity of the sReHo and dReHo metrics to distinguish IGDs from HCs. RESULTS: Compared with HCs, IGDs showed both increased static and dynamic intrinsic local connectivity in bilateral medial superior frontal gyrus (mSFG), superior frontal gyrus (SFG), and supplementary motor area (SMA). Increased dReHo in the left putamen, pallidum, caudate nucleus and bilateral thalamus were also observed. ROC curve analysis showed that the brain regions with altered sReHo and dReHo could distinguish individuals with IGD from HCs. Moreover, the sReHo values in the left mSFG and SMA as well as dReHo values in the left SMA were positively correlated with IAT scores. The dReHo values in the left caudate nucleus were negatively correlated with PSQI scores. CONCLUSIONS: These results showed impaired intrinsic local connectivity in frontostriatothalamic circuitry in individuals with IGD, which may provide new insights into the underlying neuropathological mechanisms of IGD. Besides, dynamic changes of intrinsic local connectivity in caudate nucleus may be a potential neurobiological marker linking IGD and sleep quality.


Asunto(s)
Conducta Adictiva , Juegos de Video , Humanos , Trastorno de Adicción a Internet/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Corteza Prefrontal , Mapeo Encefálico/métodos , Conducta Adictiva/diagnóstico por imagen , Internet
19.
Psychiatry Clin Neurosci ; 77(3): 178-185, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36468828

RESUMEN

BACKGROUND: Nicotine addiction and overweight often co-exist, but the neurobiological mechanism of their co-morbidity remains to be clarified. In this study, we explore how nicotine addiction and overweight affect intrinsic neural activity and neurotransmitter activity. METHODS: This study included 54 overweight people and 54 age-, sex-, and handedness-matched normal-weight individuals, who were further divided into four groups based on nicotine addiction. We used a two-way factorial design to compare intrinsic neural activity (calculated by the fALFF method) in four groups based on resting-state functional magnetic resonance images (rs-fMRI). Furthermore, the correlation between fALFF values and PET- and SPECT-derived maps to examine specific neurotransmitter system changes underlying nicotine addiction and overweight. RESULTS: Nicotine addiction and overweight affect intrinsic neural activity by themselves. In combination, they showed antagonistic effects in the interactive brain regions (left insula and right precuneus). Cross-modal correlations displayed that intrinsic neural activity changes in the interactive brain regions were related to the noradrenaline system (NAT). CONCLUSION: Due to the existence of interaction, nicotine partially restored the changes of spontaneous activity in the interactive brain regions of overweight people. Therefore, when studying one factor alone, the other should be used as a control variable. Besides, this work links the noradrenaline system with intrinsic neural activity in overweight nicotine addicts. By examining the interactions between nicotine addiction and overweight from neuroimaging and molecular perspectives, this study provides some ideas for the treatment of both co-morbidities.


Asunto(s)
Tabaquismo , Humanos , Imagen por Resonancia Magnética/métodos , Nicotina , Sobrepeso , Encéfalo , Mapeo Encefálico
20.
Eur Child Adolesc Psychiatry ; 32(7): 1317-1327, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35318540

RESUMEN

Major depression disorder (MDD) is one of the most common psychiatric disorders. Previous studies have demonstrated structural and functional abnormalities in adult depression. However, the neurobiology of adolescent depression has not been fully understood. The aim of this study was to investigate the intrinsic dysconnectivity pattern of voxel-level whole-brain functional networks in first-episode, drug-naïve adolescents with MDD. Resting-state functional magnetic resonance imaging data were acquired from 66 depressed adolescents and 47 matched healthy controls. Voxel-wise degree centrality (DC) analysis was performed to identify voxels that showed altered whole-brain functional connectivity (FC) with other voxels. We further conducted seed-based FC analysis to investigate in more detail the connectivity patterns of the identified DC changes. The relationship between altered DC and clinical variables in depressed adolescents was also analyzed. Compared with controls, depressed adolescents showed lower DC in the bilateral hippocampus, left superior temporal gyrus and right insula. Seed-based analysis revealed that depressed adolescents, relative to controls, showed hypoconnectivity between the hippocampus to the medial prefrontal regions and right precuneus. Furthermore, the DC values in the bilateral hippocampus were correlated with the Hamilton Depression Rating Scale score and duration of disease (all P < 0.05, false discovery rate corrected). Our study indicates abnormal intrinsic dysconnectivity patterns of whole-brain functional networks in drug-naïve, first-episode adolescents with MDD, and abnormal DC in the hippocampus may affect the association of prefrontal-hippocampus circuit. These findings may provide new insights into the pathophysiology of adolescent-onset MDD.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Adolescente , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/psicología , Depresión , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA