Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605226

RESUMEN

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Asunto(s)
Células Madre Hematopoyéticas , Metiltransferasas , Proteínas de Unión al ARN , Pez Cebra , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ciclo Celular , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desarrollo Embrionario/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proliferación Celular
2.
J Biol Chem ; 300(3): 105772, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382674

RESUMEN

Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.


Asunto(s)
Factores de Empalme de ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Desarrollo Embrionario , Mutación , Precursores del ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Células Madre/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929537

RESUMEN

Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a 'grape' karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.


Asunto(s)
Empalme Alternativo , Pez Cebra , Empalme Alternativo/genética , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas , Células Progenitoras Mieloides , Pez Cebra/genética , Pez Cebra/metabolismo
4.
PLoS Genet ; 18(3): e1009841, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245286

RESUMEN

Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish.


Asunto(s)
Degeneración Retiniana , Pez Cebra , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas del Ojo/metabolismo , Mamíferos/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
5.
Nucleic Acids Res ; 49(4): 2027-2043, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33476374

RESUMEN

Dysfunction of splicing factors often result in abnormal cell differentiation and apoptosis, especially in neural tissues. Mutations in pre-mRNAs processing factor 31 (PRPF31) cause autosomal dominant retinitis pigmentosa, a progressive retinal degeneration disease. The transcriptome-wide splicing events specifically regulated by PRPF31 and their biological roles in the development and maintenance of retina are still unclear. Here, we showed that the differentiation and viability of retinal progenitor cells (RPCs) are severely perturbed in prpf31 knockout zebrafish when compared with other tissues at an early embryonic stage. At the cellular level, significant mitotic arrest and DNA damage were observed. These defects could be rescued by the wild-type human PRPF31 rather than the disease-associated mutants. Further bioinformatic analysis and experimental verification uncovered that Prpf31 deletion predominantly causes the skipping of exons with a weak 5' splicing site. Moreover, genes necessary for DNA repair and mitotic progression are most enriched among the differentially spliced events, which may explain the cellular and tissular defects in prpf31 mutant retinas. This is the first time that Prpf31 is demonstrated to be essential for the survival and differentiation of RPCs during retinal neurogenesis by specifically modulating the alternative splicing of genes involved in DNA repair and mitosis.


Asunto(s)
Empalme Alternativo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Retina/embriología , Proteínas de Pez Cebra/fisiología , Animales , Apoptosis , Sistemas CRISPR-Cas , Supervivencia Celular , Daño del ADN , Reparación del ADN , Exones , Técnicas de Inactivación de Genes , Puntos de Control de la Fase M del Ciclo Celular , Células-Madre Neurales/citología , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Huso Acromático/ultraestructura , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Blood ; 133(8): 805-815, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30482793

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) originate from the hemogenic endothelium via the endothelial-to-hematopoietic transition, are self-renewing, and replenish all lineages of blood cells throughout life. BCAS2 (breast carcinoma amplified sequence 2) is a component of the spliceosome and is involved in multiple biological processes. However, its role in hematopoiesis remains unknown. We established a bcas2 knockout zebrafish model by using transcription activator-like effector nucleases. The bcas2 -/- zebrafish showed severe impairment of HSPCs and their derivatives during definitive hematopoiesis. We also observed significant signs of HSPC apoptosis in the caudal hematopoietic tissue of bcas2 -/- zebrafish, which may be rescued by suppression of p53. Furthermore, we show that the bcas2 deletion induces an abnormal alternative splicing of Mdm4 that predisposes cells to undergo p53-mediated apoptosis, which provides a mechanistic explanation of the deficiency observed in HSPCs. Our findings revealed a novel and vital role for BCAS2 during HSPC maintenance in zebrafish.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario , Células Madre Hematopoyéticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Técnicas de Silenciamiento del Gen , Proteínas de Neoplasias/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Front Genet ; 15: 1409016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055259

RESUMEN

Introduction: Inherited retinal diseases (IRDs) affect ∼4.5 million people worldwide. Elusive pathogenic variants in over 280 genes are associated with one or more clinical forms of IRDs. It is necessary to understand the complex interaction among retinal cell types and pathogenic genes by constructing a regulatory network. In this study, we attempt to establish a panoramic expression view of the cooperative work in retinal cells to understand the clinical manifestations and pathogenic bases underlying IRDs. Methods: Single-cell RNA sequencing (scRNA-seq) data on the retinas from 35 retina samples of 3 species (human, mouse, and zebrafish) including 259,087 cells were adopted to perform a comparative analysis across species. Bioinformatic tools were used to conduct weighted gene co-expression network analysis (WGCNA), single-cell regulatory network analysis, cell-cell communication analysis, and trajectory inference analysis. Results: The cross-species comparison revealed shared or species-specific gene expression patterns at single-cell resolution, such as the stathmin family genes, which were highly expressed specifically in zebrafish Müller glias (MGs). Thirteen gene modules were identified, of which nine were associated with retinal cell types, and Gene Ontology (GO) enrichment of module genes was consistent with cell-specific highly expressed genes. Many IRD genes were identified as hub genes and cell-specific regulons. Most IRDs, especially the retinitis pigmentosa (RP) genes, were enriched in rod-specific regulons. Integrated expression and transcription regulatory network genes, such as congenital stationary night blindness (CSNB) genes GRK1, PDE6B, and TRPM1, showed cell-specific expression and transcription characteristics in either rods or bipolar cells (BCs). IRD genes showed evolutionary conservation (GNAT2, PDE6G, and SAG) and divergence (GNAT2, MT-ND4, and PDE6A) along the trajectory of photoreceptors (PRs) among species. In particular, the Leber congenital amaurosis (LCA) gene OTX2 showed high expression at the beginning of the trajectory of both PRs and BCs. Conclusion: We identified molecular pathways and cell types closely connected with IRDs, bridging the gap between gene expression, genetics, and pathogenesis. The IRD genes enriched in cell-specific modules and regulons suggest that these diseases share common etiological bases. Overall, mining of interspecies transcriptome data reveals conserved transcriptomic features of retinas across species and promising applications in both normal retina anatomy and retina pathology.

8.
Front Cell Dev Biol ; 11: 1184799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484916

RESUMEN

Introduction: As a congenital and genetically related disease, many single nucleotide polymorphisms (SNPs) have been reported to be associated with the risk of HSCR. Our previous research showed that SNP rs2439302 (NRG1) interacted with rs2435357 (RET) to increase the risk of HSCR development. However, the underlying molecular mechanism is still not well understood. Methods: SNP rs2439302 (NRG1) and rs2435357 (RET) were genotyped in 470 HSCR cases. The expression of NRG1 and RET was investigated in the colon of HSCR patients. Knockdown of the NRG1 and RET homologs was performed in zebrafish to investigate their synergistic effect on ENS development. The effect of SNP rs2439302 and rs2435357 polymorphism on neuron proliferation, migration, and differentiation were investigated in SHSY-5Y cells and IPSCs. Results: Significant downregulation of NRG1 and RET expression was noticed in the aganglionic segment of HSCR patients and SHSY-5Y cells with rs2439302 GG/rs2435357 TT genotype. NRG1 and RET double mutants caused the most severe reduction in enteric neuron numbers than NRG1 single mutant or RET single mutant in the hindgut of zebrafish. SHSY-5Y cells and IPSCs with rs2439302 GG/rs2435357 TT genotype exhibited a decreased proliferative, migration, and differentiative capacity. CTCF showed a considerably higher binding ability to SNP rs2439302 CC than GG. NRG1 reduction caused a further decrease in SOX10 expression via the PI3K/Akt pathway, which regulates RET expression by directly binding to rs2435357. Discussion: SNP rs2439302 (NRG1) GG increases the risk of developing HSCR by affecting the binding of transcription factor CTCF and interacting with rs2435357 (RET) to regulate RET expression via the PI3K/Akt/SOX10 pathway.

9.
iScience ; 26(11): 108103, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867960

RESUMEN

DEAH-Box Helicase 38 (DHX38) is a pre-mRNA splicing factor and also a disease-causing gene of autosomal recessive retinitis pigmentosa (arRP). The role of DHX38 in the development and maintenance of the retina remains largely unknown. In this study, by using the dhx38 knockout zebrafish model, we demonstrated that Dhx38 deficiency causes severe differentiation defects and apoptosis of retinal progenitor cells (RPCs) through disrupted mitosis and increased DNA damage. Furthermore, we found a significant accumulation of R-loops in the dhx38-deficient RPCs and human cell lines. Finally, we found that DNA replication stress is the prerequisite for R-loop-induced DNA damage in the DHX38 knockdown cells. Taken together, our study demonstrates a necessary role of DHX38 in the development of retina and reveals a DHX38/R-loop/replication stress/DNA damage regulatory axis that is relatively independent of the known functions of DHX38 in mitosis control.

10.
Invest Ophthalmol Vis Sci ; 63(5): 32, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35616930

RESUMEN

Purpose: Bietti crystalline dystrophy (BCD) is a progressive retinal degenerative disease primarily characterized by numerous crystal-like deposits and degeneration of retinal pigment epithelium (RPE) and photoreceptor cells. CYP4V2 (cytochrome P450 family 4 subfamily V member 2) is currently the only disease-causing gene for BCD. We aimed to generate a zebrafish model to explore the functional role of CYP4V2 in the development of BCD and identify potential therapeutic targets for future studies. Methods: The cyp4v7 and cyp4v8 (homologous genes of CYP4V2) knockout zebrafish lines were generated by CRISPR/Cas9 technology. The morphology of photoreceptor and RPE cells and the accumulation of lipid droplets in RPE cells were investigated at a series of different developmental stages through histological analysis, immunofluorescence, and lipid staining. Transcriptome analysis was performed to investigate the changes in gene expression of RPE cells during the progression of BCD. Results: Progressive retinal degeneration including RPE atrophy and photoreceptor loss was observed in the mutant zebrafish as early as seven months after fertilization. We also observed the excessive accumulation of lipid droplets in RPE cells from three months after fertilization, which preceded the retinal degeneration by several months. Transcriptome analysis suggested that multiple metabolism pathways, especially the lipid metabolism pathways, were significantly changed in RPE cells. The down-regulation of the peroxisome proliferator-activated receptor α (PPARα) pathway was further confirmed in the mutant zebrafish and CYP4V2-knockdown human RPE-1 cells. Conclusions: Our work established an animal model that recapitulates the symptoms of BCD patients and revealed that abnormal lipid metabolism in RPE cells, probably caused by dysregulation of the PPARα pathway, might be the main and direct consequence of CYP4V2 deficiency. These findings will deepen our understanding of the pathogenesis of BCD and provide potential therapeutic approaches.


Asunto(s)
Distrofias Hereditarias de la Córnea , Degeneración Retiniana , Enfermedades de la Retina , Animales , Distrofias Hereditarias de la Córnea/patología , Familia 4 del Citocromo P450/genética , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Mutación , PPAR alfa/genética , Degeneración Retiniana/genética , Enfermedades de la Retina/diagnóstico , Pez Cebra
11.
Cell Death Dis ; 13(11): 962, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396940

RESUMEN

Mutations in TUB-like protein 1 (TULP1) are associated with severe early-onset retinal degeneration in humans. However, the pathogenesis remains largely unknown. There are two homologous genes of TULP1 in zebrafish, namely tulp1a and tulp1b. Here, we generated the single knockout (tulp1a-/- and tulp1b-/-) and double knockout (tulp1-dKO) models in zebrafish. Knockout of tulp1a resulted in the mislocalization of UV cone opsins and the degeneration of UV cones specifically, while knockout of tulp1b resulted in mislocalization of rod opsins and rod-cone degeneration. In the tulp1-dKO zebrafish, mislocalization of opsins was present in all types of photoreceptors, and severe degeneration was observed at a very early age, mimicking the clinical manifestations of TULP1 patients. Photoreceptor cilium length was significantly reduced in the tulp1-dKO retinas. RNA-seq analysis showed that the expression of tektin2 (tekt2), a ciliary and flagellar microtubule structural component, was downregulated in the tulp1-dKO zebrafish. Dual-luciferase reporter assay suggested that Tulp1a and Tulp1b transcriptionally activate the promoter of tekt2. In addition, ferroptosis might be activated in the tulp1-dKO zebrafish, as suggested by the up-regulation of genes related to the ferroptosis pathway, the shrinkage of mitochondria, reduction or disappearance of mitochondria cristae, and the iron and lipid droplet deposition in the retina of tulp1-dKO zebrafish. In conclusion, our study establishes an appropriate zebrafish model for TULP1-associated retinal degeneration and proposes that loss of TULP1 causes defects in cilia structure and opsin trafficking through the downregulation of tekt2, which further increases the death of photoreceptors via ferroptosis. These findings offer insight into the pathogenesis and clinical treatment of early-onset retinal degeneration.


Asunto(s)
Ferroptosis , Degeneración Retiniana , Animales , Humanos , Degeneración Retiniana/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas del Ojo/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo
12.
Biomedicines ; 9(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34829928

RESUMEN

Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba-/-) zebrafish model using CRISPR/Cas9 technology. The mafba-/- mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba-/- mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA