Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 25(11): 100950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551667

RESUMEN

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Cara , Micrognatismo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Facies , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
2.
Am J Med Genet A ; 188(7): 2209-2216, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35365979

RESUMEN

Multilocus imprinting disturbances (MLID) have been associated with up to 12% of patients with Beckwith-Wiedemann syndrome, Silver-Russell syndrome, and pseudohypoparathyroidism type 1B (PHP1B). Single-gene defects affecting components of the subcortical maternal complex (SCMC) have been reported in cases with multilocus hypomethylation defects. We present a patient with speech and language impairment with mild Angelman syndrome (AS) features who demonstrates maternal hypomethylation at 15q11.2 (SNRPN) as well as 11p15.5 (KCNQ1OT1) imprinted loci, but normal methylation at 6q24.2 (PLAGL1), 7p12.1 (GRB10), 7q32.2 (MEST), 11p15.5 (H19), 14q32.2 (MEG3), 19q13.43 (PEG3), and 20q13.32 (GNAS and GNAS-AS1). The proband also has no copy number nor sequence variants within the AS imprinting center or in UBE3A. Maternal targeted next generation sequencing did not identify any pathogenic variants in ZPF57, NLRP2, NLRP5, NLRP7, KHDC3L, PADI6, TLE6, OOEP, UHRF1 or ZAR1. The presence of very delayed, yet functional speech, behavioral difficulties, EEG abnormalities but without clinical seizures, and normocephaly are consistent with the 15q11.2 hypomethylation defect observed in this patient. To our knowledge, this is the first report of MLID in a patient with mild, likely mosaic, Angelman syndrome.


Asunto(s)
Síndrome de Angelman , Síndrome de Beckwith-Wiedemann , Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Proteínas Adaptadoras Transductoras de Señales/genética , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Síndrome de Beckwith-Wiedemann/complicaciones , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Proteínas Potenciadoras de Unión a CCAAT , Niño , Metilación de ADN , Impresión Genómica , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Ubiquitina-Proteína Ligasas
3.
J Pediatr Hematol Oncol ; 43(3): e336-e340, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33122585

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome usually caused by heterozygous variants in ribosomal proteins (RP) and which leads to severe anemia. Genetic studies in DBA rely primarily on multigene panels that often result in variants of unknown significance. Our objective was to optimize polysome profiling to functionally validate new large subunit RP variants. We determined the optimal experimental conditions for B-cell polysome profiles then performed this analysis on 2 children with DBA and novel missense RPL5 (uL18) and RPL26 (uL24) variants of unknown significance. Both patients had reduced 60S and 80S fractions when compared with an unaffected parent consistent with a large ribosomal subunit defect. Polysome profiling using primary B-cells is an adjunctive tool that can assist in validation of large subunit RP variants of uncertain significance. Further studies are necessary to validate this method in patients with known DBA mutations, small RP subunit variants, and silent carriers.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Polirribosomas/genética , Proteínas Ribosómicas/genética , Linfocitos B/metabolismo , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación Missense
4.
J Clin Immunol ; 40(2): 267-276, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31853824

RESUMEN

We report three new cases of a germline heterozygous gain-of-function missense (p.(Met1141Lys)) mutation in the C2 domain of phospholipase C gamma 2 (PLCG2) associated with symptoms consistent with previously described auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome and pediatric common variable immunodeficiency (CVID). Functional evaluation showed platelet hyper-reactivity, increased B cell receptor-triggered calcium influx and ERK phosphorylation. Expression of the altered p.(Met1141Lys) variant in a PLCγ2-knockout DT40 cell line showed clearly enhanced BCR-triggered influx of external calcium when compared to control-transfected cells. Our results further expand the molecular basis of pediatric CVID and phenotypic spectrum of PLCγ2-related defects.


Asunto(s)
Linfocitos B/inmunología , Inmunodeficiencia Variable Común/diagnóstico , Mutación de Línea Germinal/genética , Síndromes de Inmunodeficiencia/diagnóstico , Mutación Missense/genética , Fosfolipasa C gamma/genética , Autoinmunidad/genética , Señalización del Calcio , Línea Celular , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Fenotipo , Dominios Proteicos/genética
5.
Ann Neurol ; 86(6): 899-912, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600826

RESUMEN

OBJECTIVE: Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV 2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. METHODS: We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV 2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. RESULTS: Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild-type KV 2.1. Quantification of protein expression also identified variants with reduced total KV 2.1 expression or deficient cell-surface expression. INTERPRETATION: Our study establishes a platform for rapid screening of KV 2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype. ANN NEUROL 2019;86:899-912.


Asunto(s)
Variación Genética/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Trastornos del Neurodesarrollo/genética , Canales de Potasio Shab/genética , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Estructura Secundaria de Proteína , Canales de Potasio Shab/química
6.
Pediatr Res ; 87(4): 735-739, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31618753

RESUMEN

BACKGROUND: As clinical exome sequencing (CES) becomes more common, understanding which patients are most likely to benefit and in what manner is critical for the general pediatrics community to appreciate. METHODS: Five hundred and twenty-three patients referred to the Pediatric Genetics clinic at Michigan Medicine were systematically phenotyped by the presence or absence of abnormalities for 13 body/organ systems by a Clinical Genetics team. All patients then underwent CES. RESULTS: Overall, 30% of patients who underwent CES had an identified pathogenic mutation. The most common phenotypes were developmental delay (83%), neuromuscular system abnormalities (81%), and multiple congenital anomalies (42%). In all, 67% of patients had a variant of uncertain significance (VUS) or gene of uncertain significance (GUS); 23% had no variants reported. There was a significant difference in the average number of body systems affected among these groups (pathogenic 5.89, VUS 6.0, GUS 6.12, and no variant 4.6; P < 0.00001). Representative cases highlight four ways in which CES is changing clinical pediatric practice. CONCLUSIONS: Patients with identified variants are enriched for multiple organ system involvement. Furthermore, our phenotyping provides broad insights into which patients are most likely to benefit from genetics referral and CES and how those results can help guide clinical practice more generally.


Asunto(s)
Anomalías Congénitas/genética , Análisis Mutacional de ADN , Secuenciación del Exoma , Pruebas Genéticas , Mutación , Anomalías Congénitas/diagnóstico , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Valor Predictivo de las Pruebas , Estudios Retrospectivos
7.
Hum Mol Genet ; 25(3): 597-608, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26647312

RESUMEN

De novo truncating mutations in Additional sex combs-like 3 (ASXL3) have been identified in individuals with Bainbridge-Ropers syndrome (BRS), characterized by failure to thrive, global developmental delay, feeding problems, hypotonia, dysmorphic features, profound speech delays and intellectual disability. We identified three novel de novo heterozygous truncating variants distributed across ASXL3, outside the original cluster of ASXL3 mutations previously described for BRS. Primary skin fibroblasts established from a BRS patient were used to investigate the functional impact of pathogenic variants. ASXL3 mRNA transcripts from the mutated allele are prone to nonsense-mediated decay, and expression of ASXL3 is reduced. We found that ASXL3 interacts with BAP1, a hydrolase that removes mono-ubiquitin from histone H2A lysine 119 (H2AK119Ub1) as a component of the Polycomb repressive deubiquitination (PR-DUB) complex. A significant increase in H2AK119Ub1 was observed in ASXL3 patient fibroblasts, highlighting an important functional role for ASXL3 in PR-DUB mediated deubiquitination. Transcriptomes of ASXL3 patient and control fibroblasts were compared to investigate the impact of chromatin changes on transcriptional regulation. Out of 564 significantly differentially expressed genes (DEGs) in ASXL3 patient fibroblasts, 52% were upregulated and 48% downregulated. DEGs were enriched in molecular processes impacting transcriptional regulation, development and proliferation, consistent with the features of BRS. This is the first single gene disorder linked to defects in deubiquitination of H2AK119Ub1 and suggests an important role for dynamic regulation of H2A mono-ubiquitination in transcriptional regulation and the pathophysiology of BRS.


Asunto(s)
Discapacidades del Desarrollo/genética , Insuficiencia de Crecimiento/genética , Histonas/metabolismo , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Mutación , Factores de Transcripción/metabolismo , Preescolar , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Insuficiencia de Crecimiento/metabolismo , Insuficiencia de Crecimiento/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Genes Dominantes , Heterocigoto , Histonas/genética , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/metabolismo , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Cultivo Primario de Células , Unión Proteica , Síndrome , Factores de Transcripción/genética , Transcriptoma , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
8.
Am J Med Genet A ; 167A(12): 3038-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26420380

RESUMEN

The ability to identify the clinical nature of the recurrent duplication of chromosome 17q12 has been limited by its rarity and the diverse range of phenotypes associated with this genomic change. In order to further define the clinical features of affected patients, detailed clinical information was collected in the largest series to date (30 patients and 2 of their siblings) through a multi-institutional collaborative effort. The majority of patients presented with developmental delays varying from mild to severe. Though dysmorphic features were commonly reported, patients do not have consistent and recognizable features. Cardiac, ophthalmologic, growth, behavioral, and other abnormalities were each present in a subset of patients. The newly associated features potentially resulting from 17q12 duplication include height and weight above the 95th percentile, cataracts, microphthalmia, coloboma, astigmatism, tracheomalacia, cutaneous mosaicism, pectus excavatum, scoliosis, hypermobility, hypospadias, diverticulum of Kommerell, pyloric stenosis, and pseudohypoparathryoidism. The majority of duplications were inherited with some carrier parents reporting learning disabilities or microcephaly. We identified additional, potentially contributory copy number changes in a subset of patients, including one patient each with 16p11.2 deletion and 15q13.3 deletion. Our data further define and expand the clinical spectrum associated with duplications of 17q12 and provide support for the role of genomic modifiers contributing to phenotypic variability.


Asunto(s)
Anomalías Múltiples/genética , Duplicación Cromosómica , Adolescente , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Cara/anomalías , Femenino , Humanos , Lactante , Masculino , Microcefalia/genética , Fenotipo , Adulto Joven
9.
Nat Genet ; 37(10): 1044-6, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16186812

RESUMEN

Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant recurrent neuropathy affecting the brachial plexus. HNA is triggered by environmental factors such as infection or parturition. We report three mutations in the gene septin 9 (SEPT9) in six families with HNA linked to chromosome 17q25. HNA is the first monogenetic disease caused by mutations in a gene of the septin family. Septins are implicated in formation of the cytoskeleton, cell division and tumorigenesis.


Asunto(s)
Neuritis del Plexo Braquial/genética , Cromosomas Humanos Par 17/genética , GTP Fosfohidrolasas/genética , Mutación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perros , Humanos , Ratones , Datos de Secuencia Molecular , Ratas , Septinas
10.
Hum Mutat ; 34(10): 1415-23, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23878096

RESUMEN

We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of ~5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Trastornos del Conocimiento/genética , Discapacidades del Desarrollo/genética , Retrovirus Endógenos/genética , Hipotonía Muscular/genética , Adolescente , Adulto , Secuencia de Bases , Niño , Preescolar , Puntos de Rotura del Cromosoma , Trastornos del Conocimiento/diagnóstico , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/diagnóstico , Facies , Femenino , Orden Génico , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Hipotonía Muscular/diagnóstico , Fenotipo , Alineación de Secuencia , Síndrome , Adulto Joven
11.
Am J Med Genet A ; 161A(4): 717-31, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23495017

RESUMEN

Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray-based comparative genomic hybridization. To more firmly establish the full phenotypic spectrum associated with exonic NRXN1 deletions, we report the clinical features of 27 individuals with NRXN1 deletions, who represent 23 of these 34 families. The frequency of exonic NRXN1 deletions among our postnatally diagnosed patients (0.11%) is significantly higher than the frequency among reported controls (0.02%; P = 6.08 × 10(-7) ), supporting a role for these deletions in the development of abnormal phenotypes. Generally, most individuals with NRXN1 exonic deletions have developmental delay (particularly speech), abnormal behaviors, and mild dysmorphic features. In our cohort, autism spectrum disorders were diagnosed in 43% (10/23), and 16% (4/25) had epilepsy. The presence of NRXN1 deletions in normal parents and siblings suggests reduced penetrance and/or variable expressivity, which may be influenced by genetic, environmental, and/or stochastic factors. The pathogenicity of these deletions may also be affected by the location of the deletion within the gene. Counseling should appropriately represent this spectrum of possibilities when discussing recurrence risks or expectations for a child found to have a deletion in NRXN1.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Eliminación de Gen , Proteínas del Tejido Nervioso/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adolescente , Adulto , Trastorno Autístico/genética , Proteínas de Unión al Calcio , Niño , Preescolar , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/genética , Exones , Facies , Femenino , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Moléculas de Adhesión de Célula Nerviosa , Penetrancia , Fenotipo , Esquizofrenia/genética , Adulto Joven
12.
J Med Genet ; 49(2): 110-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22180641

RESUMEN

BACKGROUND: Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. AIM: To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. METHODS: Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. RESULTS: Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. CONCLUSION: The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screening.


Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Cromosomas Humanos Par 15 , Discapacidades del Desarrollo/genética , Anomalías Múltiples/diagnóstico , Secuencia de Bases , Puntos de Rotura del Cromosoma , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/diagnóstico , Facies , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Datos de Secuencia Molecular , Duplicaciones Segmentarias en el Genoma , Síndrome
13.
Pediatr Neurol ; 126: 65-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740135

RESUMEN

BACKGROUND: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants. METHODS: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant. RESULTS: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P < 0.05). CONCLUSIONS: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular/fisiología , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/genética , Semaforinas/fisiología , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Transducción de Señal/fisiología , Adulto Joven
14.
Hum Mol Genet ; 18(7): 1200-8, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19139049

RESUMEN

Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA.


Asunto(s)
Neuritis del Plexo Braquial/genética , Efecto Fundador , GTP Fosfohidrolasas/genética , Duplicación de Gen , Predisposición Genética a la Enfermedad , Emparejamiento Base/genética , Secuencia de Bases , Segregación Cromosómica , Análisis Mutacional de ADN , Exones/genética , Familia , Femenino , Regulación de la Expresión Génica , Haplotipos , Humanos , Masculino , Datos de Secuencia Molecular , Mutación/genética , América del Norte , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sistemas de Lectura/genética , Septinas
15.
Am J Med Genet A ; 155A(7): 1511-6, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21671394

RESUMEN

Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Enfermedades Hematológicas/genética , Mutación/genética , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico , Alelos , Cara/anomalías , Orden Génico , Pruebas Genéticas , Genotipo , Enfermedades Hematológicas/diagnóstico , Humanos , Fenotipo , Pronóstico , Enfermedades Vestibulares/diagnóstico
16.
Pediatr Neurol ; 119: 34-39, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845444

RESUMEN

BACKGROUND: TANGO2-related metabolic encephalopathy and arrhythmias (TRMEA) is a rare, phenotypically heterogeneous, neurological disease affecting children. METHODS: We conducted a chart review of five children with molecularly confirmed TRMEA diagnosed at our institution and compiled pathogenic variant frequency and symptom prevalence from cases previously reported in the literature. RESULTS: Including those patients in our case series, 76 patients with TRMEA have been described. Developmental delay (93%) and/or regression (71%), spasticity (78%), and seizures (57%) are common in TRMEA and frequently precede life-threatening symptoms such as metabolic decompensation with lactic acidosis (83%), cardiomyopathy (38%), and cardiac arrhythmias (68%). Deletion of exons 3 to 9 is the most common pathogenic variant (39% of alleles). The majority of reported intragenic variants (17 of 27) result in disruption of the reading frame, and no clear genotype-phenotype correlations could be identified for those variants wherein the reading frame is maintained, highlighting instead the variable expressivity of the disease. CONCLUSIONS: Patients with TRMEA frequently experience life-threatening complications that are preceded by common neurological symptoms underscoring the need for pediatric neurologists to be familiar with this condition. Additional work pertaining to disease pathophysiology and potential therapeutics is needed.


Asunto(s)
Arritmias Cardíacas , Encefalopatías Metabólicas , Estudios de Asociación Genética , Adolescente , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Ataxia/epidemiología , Encefalopatías Metabólicas/epidemiología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Discapacidades del Desarrollo/epidemiología , Femenino , Humanos , Lactante , Masculino , Prevalencia , Rabdomiólisis/epidemiología , Síndrome
17.
Pediatr Rev ; 30(9): e66-76, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19726697

RESUMEN

Hypotonia is characterized by reduced resistance to passive range of motion in joints versus weakness, which is a reduction in the maximum muscle power that can be generated. (Dubowitz, 1985; Crawford, 1992; Martin, 2005) Based on strong research evidence, central hypotonia accounts for 60% to 80% of cases of hypotonia, whereas peripheral hypotonia is the cause in about 15% to 30% of cases. Disorders causing hypotonia often are associated with a depressed level of consciousness, predominantly axial weakness, normal strength accompanying the hypotonia, and hyperactive or normal reflexes. (Martin, 2005; Igarashi, 2004; Richer, 2001; Miller, 1992; Crawford, 1992; Bergen, 1985; Dubowitz, 1985) Based on some research evidence, 50% of patients who have hypotonia are diagnosed by history and physical examination alone. (Paro-Panjan, 2004) Based on some research evidence, an appropriate medical and genetic evaluation of hypotonia in infants includes a karyotype, DNA-based diagnostic tests, and cranial imaging. (Battaglia, 2008; Laugel, 2008; Birdi, 2005; Paro-Panjan, 2004; Prasad, 2003; Richer, 2001; Dimario, 1989) Based on strong research evidence, infant botulism should be suspected in an acute or subacute presentation of hypotonia in an infant younger than 6 months of age who has signs and symptoms such as constipation, listlessness, poor feeding, weak cry, and a decreased gag reflex. (Francisco, 2007; Muensterer, 2000)


Asunto(s)
Hipotonía Muscular/genética , Hipotonía Muscular/fisiopatología , Encéfalo/fisiopatología , Corteza Cerebral/fisiopatología , Preescolar , Estreñimiento/etiología , Fasciculación/etiología , Femenino , Humanos , Lactante , Recién Nacido , Articulaciones/fisiopatología , Masculino , Músculo Esquelético/fisiopatología , Unión Neuromuscular/fisiopatología , Postura , Trisomía/genética
18.
Ann Neurol ; 62(4): 390-405, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17886299

RESUMEN

OBJECTIVE: Dominant mutations in the three collagen VI genes cause Bethlem myopathy, a disorder characterized by proximal muscle weakness and commonly contractures of the fingers, wrists, and ankles. Although more than 20 different dominant mutations have been identified in Bethlem myopathy patients, the biosynthetic consequences of only a subset of these have been studied, and in many cases, the pathogenic mechanisms remain unknown. METHODS: We have screened fourteen Bethlem myopathy patients for collagen VI mutations and performed detailed analyses of collagen VI biosynthesis and intracellular and extracellular assembly. RESULTS: Collagen VI abnormalities were identified in eight patients. One patient produced around half the normal amount of alpha1(VI) messenger RNA and reduced amounts of collagen VI protein. Two patients had a previously reported mutation causing skipping of COL6A1 exon 14, and three patients had novel mutations leading to in-frame deletions toward the N-terminal end of the triple-helical domain. These mutations have different and complex effects on collagen VI intracellular and extracellular assembly. Two patients had single amino acid substitutions in the A-domains of COL6A2 and COL6A3. Collagen VI intracellular and extracellular assembly was normal in one of these patients. INTERPRETATION: The key to dissecting the pathogenic mechanisms of collagen VI mutations lies in detailed analysis of collagen VI biosynthesis and assembly. The majority of mutations result in secretion and deposition of structurally abnormal collagen VI. However, one A-domain mutation had no detectable effect on assembly, suggesting that it acts by compromising collagen VI interactions in the extracellular matrix of muscle.


Asunto(s)
Enfermedades del Colágeno/genética , Colágeno Tipo VI/genética , Genes Dominantes/genética , Enfermedades Musculares/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación
20.
Lymphat Res Biol ; 5(3): 169-74, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18035935

RESUMEN

BACKGROUND: To determine if lymphocytopenia in patients with lymphatic malformation (LM) is associated with rates of infection and poor clinical outcomes. MATERIALS AND METHODS: This is a retrospective case series at a tertiary pediatric hospital, of 21 consecutive patients (11 male and 10 female) undergoing LM treatment. Clinical data (i.e., age, clinical LM stage, presence of tissue hypertrophy, frequency/type of medical therapy, and number of hospitalizations) obtained from LM patients with lymphocytopenia (n = 6) was compared to LM patients without lymphocytopenia (n = 15). RESULTS: The average age at the time of detailed leukocyte analysis was 67 months (Range 1-231). Six patients with lymphocytopenia (below 1500/cm(3)) were compared with 15 without lymphocytopenia (above 1500/cm(3)). All six patients with lymphocytopenia had large bilateral LM and normal neutrophil and platelet counts. The total number of hospital admissions was two times greater in lymphocytopenic patients (mean 8.3) compared to nonlymphocytopenic patients (mean 4.09) Chi square analysis revealed a statistical difference in lymphocytopenic patients. They were more likely to have had central line placement, central line infection, bacteremia, prophylactic antibiotics, admission at birth, infections distant from the lymphatic malformation and a treatment complication compared to nonlymphocytopenic patients. Univariate logistic regression revealed that, independent of LM stage, the use of prophylactic antibiotics, the need for a central line, the occurrence of a line infection, and the hospital admission rate were significantly increased in lymphocytopenic patients. CONCLUSION: Patients with LM-associated lymphocytopenia have increased hospitalization requirements, rate of infection, and receive more intensive antibiotic therapy compared to nonlymphocytopenic LM patients.


Asunto(s)
Anomalías Linfáticas/complicaciones , Linfopenia/diagnóstico , Linfopenia/etiología , Femenino , Hospitalización , Humanos , Linfopenia/tratamiento farmacológico , Masculino , Pronóstico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA