Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2315930120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147558

RESUMEN

Red blood cell (RBC) metabolic reprogramming upon exposure to high altitude contributes to physiological human adaptations to hypoxia, a multifaceted process critical to health and disease. To delve into the molecular underpinnings of this phenomenon, first, we performed a multi-omics analysis of RBCs from six lowlanders after exposure to high-altitude hypoxia, with longitudinal sampling at baseline, upon ascent to 5,100 m and descent to sea level. Results highlighted an association between erythrocyte levels of 2,3-bisphosphoglycerate (BPG), an allosteric regulator of hemoglobin that favors oxygen off-loading in the face of hypoxia, and expression levels of the Rhesus blood group RHCE protein. We then expanded on these findings by measuring BPG in RBCs from 13,091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. These data informed a genome-wide association study using BPG levels as a quantitative trait, which identified genetic polymorphisms in the region coding for the Rhesus blood group RHCE as critical determinants of BPG levels in erythrocytes from healthy human volunteers. Mechanistically, we suggest that the Rh group complex, which participates in the exchange of ammonium with the extracellular compartment, may contribute to intracellular alkalinization, thus favoring BPG mutase activity.


Asunto(s)
Altitud , Antígenos de Grupos Sanguíneos , Hipoxia , Sistema del Grupo Sanguíneo Rh-Hr , Humanos , 2,3-Difosfoglicerato/metabolismo , Eritrocitos/metabolismo , Estudio de Asociación del Genoma Completo , Hipoxia/genética , Hipoxia/metabolismo , Polimorfismo Genético , Sistema del Grupo Sanguíneo Rh-Hr/genética , Sistema del Grupo Sanguíneo Rh-Hr/metabolismo
2.
Blood ; 143(5): 456-472, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976448

RESUMEN

ABSTRACT: In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.


Asunto(s)
Donantes de Sangre , Hemólisis , Humanos , Quinurenina/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Eritrocitos/metabolismo , Metabolómica , Conservación de la Sangre/métodos
3.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38513237

RESUMEN

ABSTRACT: Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.


Asunto(s)
Carnitina , Eritrocitos , Hemólisis , Carnitina/metabolismo , Humanos , Animales , Ratones , Eritrocitos/metabolismo , Polimorfismo de Nucleótido Simple , Envejecimiento Eritrocítico , Estudio de Asociación del Genoma Completo , Masculino , Femenino , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Conservación de la Sangre/métodos
4.
Mol Cell Proteomics ; 23(6): 100779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679388

RESUMEN

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.


Asunto(s)
Venenos de Crotálidos , Crotalus , Proteoma , Proteómica , Animales , Crotalus/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/metabolismo , Ácidos Hidroxámicos/farmacología , Venenos de Serpiente/metabolismo
5.
Immunity ; 44(6): 1299-311, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27234056

RESUMEN

Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula , Células Cultivadas , Memoria Inmunológica , Interferón gamma/metabolismo , Activación de Linfocitos , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Fosforilación Oxidativa
6.
Nature ; 573(7774): 375-380, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485080

RESUMEN

The molecular mechanisms of exon definition and back-splicing are fundamental unanswered questions in pre-mRNA splicing. Here we report cryo-electron microscopy structures of the yeast spliceosomal E complex assembled on introns, providing a view of the earliest event in the splicing cycle that commits pre-mRNAs to splicing. The E complex architecture suggests that the same spliceosome can assemble across an exon, and that it either remodels to span an intron for canonical linear splicing (typically on short exons) or catalyses back-splicing to generate circular RNA (on long exons). The model is supported by our experiments, which show that an E complex assembled on the middle exon of yeast EFM5 or HMRA1 can be chased into circular RNA when the exon is sufficiently long. This simple model unifies intron definition, exon definition, and back-splicing through the same spliceosome in all eukaryotes and should inspire experiments in many other systems to understand the mechanism and regulation of these processes.


Asunto(s)
Exones , Intrones , Modelos Moleculares , Empalme del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Estructura Cuaternaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/metabolismo , Empalmosomas/ultraestructura
7.
Proc Natl Acad Sci U S A ; 119(11)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217532

RESUMEN

The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.


Asunto(s)
Sangre/metabolismo , COVID-19/inmunología , Interferones/sangre , Proteoma , Transcriptoma , COVID-19/sangre , Estudios de Casos y Controles , Conjuntos de Datos como Asunto , Humanos , Pacientes Internos
8.
J Proteome Res ; 23(4): 1163-1173, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386921

RESUMEN

Trauma-induced coagulopathy (TIC) is a leading contributor to preventable mortality in severely injured patients. Understanding the molecular drivers of TIC is an essential step in identifying novel therapeutics to reduce morbidity and mortality. This study investigated multiomics and viscoelastic responses to polytrauma using our novel swine model and compared these findings with severely injured patients. Molecular signatures of TIC were significantly associated with perturbed coagulation and inflammation systems as well as extensive hemolysis. These results were consistent with patterns observed in trauma patients who had multisystem injuries. Here, intervention using resuscitative endovascular balloon occlusion of the aorta following polytrauma in our swine model revealed distinct multiomics alterations as a function of placement location. Aortic balloon placement in zone-1 worsened ischemic damage and mitochondrial dysfunction, patterns that continued throughout the monitored time course. While placement in zone-III showed a beneficial effect on TIC, it showed an improvement in effective coagulation. Taken together, this study highlights the translational relevance of our polytrauma swine model for investigating therapeutic interventions to correct TIC in patients.


Asunto(s)
Oclusión con Balón , Traumatismo Múltiple , Humanos , Animales , Porcinos , Multiómica , Traumatismo Múltiple/complicaciones , Traumatismo Múltiple/terapia , Aorta , Coagulación Sanguínea , Oclusión con Balón/métodos
9.
Am J Obstet Gynecol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710264

RESUMEN

BACKGROUND: Postpartum hemorrhage is difficult to predict, is associated with significant maternal morbidity, and is the leading cause of maternal mortality worldwide. The identification of maternal biomarkers that can predict increased postpartum hemorrhage risk would enhance clinical care and may uncover mechanisms that lead to postpartum hemorrhage. OBJECTIVE: This retrospective case-control study employed agnostic proteomic profiling of maternal plasma samples to identify differentially abundant proteins in controls and postpartum hemorrhage cases. STUDY DESIGN: Maternal plasma samples were procured from a cohort of >60,000 participants in a single institution's perinatal repository. Postpartum hemorrhage was defined as a decrease in hematocrit of ≥10% or receipt of transfusion within 24 hours after delivery. Postpartum hemorrhage cases (n=30) were matched by maternal age and delivery mode (vaginal or cesarean) with controls (n=56). Mass spectrometry was used to identify differentially abundant proteins using integrated peptide peak areas. Statistically significant differences between groups were defined as P<.05 after controlling for multiple comparisons. RESULTS: By study design, cases and controls did not differ in race, ethnicity, gestational age at delivery, blood type, or predelivery platelet count. Cases had slightly but significantly lower predelivery and postdelivery hematocrit and hemoglobin. Mass spectrometry detected 1140 proteins, including 77 proteins for which relative abundance differed significantly between cases and controls (fold change >1.15, P<.05). Of these differentially abundant plasma proteins, most had likely liver or placental origins. Gene ontology term analysis mapped to protein clusters involved in responses to wound healing, stress response, and host immune defense. Significantly differentially abundant proteins with the highest fold change (prostaglandin D2 synthase, periostin, and several serine protease inhibitors) did not correlate with predelivery hematocrit or hemoglobin but identified postpartum hemorrhage cases with logistic regression modeling revealing good-to-excellent area under the operator receiver characteristic curves (0.802-0.874). Incorporating predelivery hemoglobin with these candidate proteins further improved the identification of postpartum hemorrhage cases. CONCLUSION: Agnostic analysis of maternal plasma samples identified differentially abundant proteins in controls and postpartum hemorrhage cases. Several of these proteins are known to participate in biologically plausible pathways for postpartum hemorrhage risk and have potential value for predicting postpartum hemorrhage. These findings identify candidate protein biomarkers for future validation and mechanistic studies.

10.
BMC Biol ; 21(1): 136, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280596

RESUMEN

BACKGROUND: Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake (Crotalus viridis viridis) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom. RESULTS: Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition. CONCLUSIONS: Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.


Asunto(s)
Venenos de Crotálidos , Crotalus , Animales , Crotalus/genética , Filogenia , Venenos de Serpiente/genética , Venenos de Serpiente/química , Fenotipo , Venenos de Crotálidos/genética , Venenos de Crotálidos/química
11.
J Infect Dis ; 227(8): 993-1001, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36200236

RESUMEN

Herpes zoster (HZ; shingles) caused by varicella zoster virus reactivation increases stroke risk for up to 1 year after HZ. The underlying mechanisms are unclear, however, the development of stroke distant from the site of zoster (eg, thoracic, lumbar, sacral) that can occur months after resolution of rash points to a long-lasting, virus-induced soluble factor (or factors) that can trigger thrombosis and/or vasculitis. Herein, we investigated the content and contributions of circulating plasma exosomes from HZ and non-HZ patient samples. Compared with non-HZ exosomes, HZ exosomes (1) contained proteins conferring a prothrombotic state to recipient cells and (2) activated platelets leading to the formation of platelet-leukocyte aggregates. Exosomes 3 months after HZ yielded similar results and also triggered cerebrovascular cells to secrete the proinflammatory cytokines, interleukin 6 and 8. These results can potentially change clinical practice through addition of antiplatelet agents for HZ and initiatives to increase HZ vaccine uptake to decrease stroke risk.


Asunto(s)
Herpes Zóster , Accidente Cerebrovascular , Humanos , Exosomas , Herpes Zóster/epidemiología , Herpesvirus Humano 3/fisiología , Accidente Cerebrovascular/epidemiología , Medición de Riesgo , Masculino , Femenino , Plasma/citología , Trombosis/virología
12.
J Proteome Res ; 22(3): 790-801, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36763087

RESUMEN

The extracellular matrix (ECM) is a critical non-cellular component of multicellular organisms containing a variety of proteins, glycoproteins, and proteoglycans which have been implicated in a wide variety of essential biological processes, including development, wound healing, and aging. Due to low solubility, many ECM proteins have been underrepresented in previous proteomic datasets. Using an optimized three-step decellularization and ECM extraction method involving chaotrope extraction and digestion via hydroxylamine hydrochloride, we have generated coverage of the matrisome across 25 organs. We observe that the top 100 most abundant proteins from the ECM fractions of all tissues are generally present in all tissues, indicating that tissue matrices are principally composed of a shared set of ECM proteins. However, these proteins vary up to 4000-fold between tissues, resulting in highly unique matrix profiles even with the same primary set of proteins. A data reduction approach was used to reveal related networks of expressed ECM proteins across varying tissues, including basement membrane and collagen subtypes.


Asunto(s)
Proteínas de la Matriz Extracelular , Proteómica , Animales , Ratones , Proteínas de la Matriz Extracelular/metabolismo , Proteómica/métodos , Matriz Extracelular/metabolismo , Proteoglicanos , Espectrometría de Masas
13.
Ann Surg ; 278(6): e1299-e1312, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334680

RESUMEN

OBJECTIVE: Advanced mass spectrometry methods were leveraged to analyze both proteomics and metabolomics signatures in plasma upon controlled tissue injury (TI) and hemorrhagic shock (HS)-isolated or combined-in a swine model, followed by correlation to viscoelastic measurements of coagulopathy via thrombelastography. BACKGROUND: TI and HS cause distinct molecular changes in plasma in both animal models and trauma patients. However, the contribution to coagulopathy of trauma, the leading cause of preventable mortality in this patient population remains unclear. The recent development of a swine model for isolated or combined TI+HS facilitated the current study. METHODS: Male swine (n=17) were randomized to either isolated or combined TI and HS. Coagulation status was analyzed by thrombelastography during the monitored time course. The plasma fractions of the blood draws (at baseline; end of shock; and at 30 minutes, 1, 2, and 4 hours after shock) were analyzed by mass spectrometry-based proteomics and metabolomics workflows. RESULTS: HS-isolated or combined with TI-caused the most severe omic alterations during the monitored time course. While isolated TI delayed the activation of coagulation cascades. Correlation to thrombelastography parameters of clot strength (maximum amplitude) and breakdown (LY30) revealed signatures of coagulopathy which were supported by analysis of gene ontology-enriched biological pathways. CONCLUSION: The current study provides a comprehensive characterization of proteomic and metabolomic alterations to combined or isolated TI and HS in a swine model and identifies early and late omics correlates to viscoelastic measurements in this system.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Choque Hemorrágico , Animales , Masculino , Coagulación Sanguínea , Trastornos de la Coagulación Sanguínea/etiología , Modelos Animales de Enfermedad , Proteómica , Choque Hemorrágico/complicaciones , Porcinos , Tromboelastografía , Distribución Aleatoria
14.
Ann Surg ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38073572

RESUMEN

OBJECTIVE: We aimed to investigate if ex vivo plasma from injured patients causes endothelial calcium (Ca2+) influx as a mechanism of trauma-induced endothelial permeability. SUMMARY BACKGROUND DATA: Endothelial permeability after trauma contributes to post-injury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca2+ signaling may play a role. METHODS: Ex vivo plasma from injured patients with "Low Injury/Low Shock" (injury severity score [ISS]<15, base excess [BE])≥-6mEq/L) and "High Injury/High Shock" (ISS≥15, BE<-6mEq/L) were used to treat endothelial cells. Experimental conditions included Ca2+ removal from the extracellular buffer, cyclopiazonic acid pre-treatment to deplete intracellular Ca2+ stores, and GSK2193874 pre-treatment to block the TRPV4 Ca2+ channel. Live cell fluorescence microscopy and ECIS were used to assess cytosolic Ca2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain (MLC) phosphorylation and actomyosin contraction. RESULTS: Compared to Low Injury/Low Shock plasma, High Injury/High Shock induced greater cytosolic Ca2+ increase. Cytosolic Ca2+ increase, MLC phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca2+ present. High Injury/High Shock plasma did not induce endothelial permeability without extracellular Ca2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca2+ influx and permeability. CONCLUSIONS: This study illuminates a novel mechanism of post-injury endotheliopathy involving Ca2+ influx via the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca2+-targeted therapies and interventions in the care of severely injured patients.

15.
Am J Physiol Heart Circ Physiol ; 324(6): H804-H820, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961489

RESUMEN

Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Animales , Bovinos , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Mecanotransducción Celular , Proteómica , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/metabolismo , Ventrículos Cardíacos , Modelos Animales de Enfermedad , Hipoxia , Remodelación Ventricular , Función Ventricular Derecha , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/complicaciones
16.
Transfusion ; 63(8): 1447-1462, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37466356

RESUMEN

BACKGROUND: Even in the era of the COVID-19 pandemic, trauma remains the global leading cause of mortality under the age of 49. Trauma-induced coagulopathy is a leading driver of early mortality in critically ill patients, and transfusion of platelet products is a life-saving intervention to restore hemostasis in the bleeding patient. However, despite extensive functional studies based on viscoelastic assays, limited information is available about the impact of platelet transfusion on the circulating molecular signatures in trauma patients receiving platelet transfusion. MATERIALS AND METHODS: To bridge this gap, we leveraged metabolomics and proteomics approaches to characterize longitudinal plasma samples (n = 118; up to 11 time points; total samples: 759) from trauma patients enrolled in the Control Of Major Bleeding After Trauma (COMBAT) study. Samples were collected in the field, in the emergency department (ED), and at intervals up to 168 h (7 days) post-hospitalization. Transfusion of platelet (PLT) products was performed (n = 30; total samples: 250) in the ED through 24 h post-hospitalization. Longitudinal plasma samples were subjected to mass spectrometry-based metabolomics and proteomics workflows. Multivariate analyses were performed to determine omics markers of transfusion of one, two, three, or more PLT transfusions. RESULTS: Higher levels of tranexamic acid (TXA), inflammatory proteins, carnitines, and polyamines were detected in patients requiring PLT transfusion. Correlation of PLT units with omics data suggested sicker patients required more units and partially overlap with the population requiring transfusion of packed red blood cell products. Furthermore, platelet activation was likely increased in the most severely injured patients. Fatty acid levels were significantly lower in PLT transfusion recipients (at time of maximal transfusion: Hour 4) compared with non-recipients, while carnitine levels were significantly higher. Fatty acid levels restore later in the time course (e.g., post-PLT transfusion). DISCUSSION: The present study provides the first multi-omics characterization of platelet transfusion efficacy in a clinically relevant cohort of trauma patients. Physiological alterations following transfusion were detected, highlighting the efficacy of mass spectrometry-based omics techniques to improve personalized transfusion medicine. More specialized clinical research studies focused on PLT transfusion, including organized pre and post transfusion sample collection and limitation to PLT products only, are required to fully understand subsequent metabolomic and proteomic alterations.


Asunto(s)
COVID-19 , Transfusión de Plaquetas , Humanos , Transfusión de Plaquetas/métodos , Pandemias , Proteómica , Hemorragia/terapia , Ácidos Grasos
17.
Mol Cell Proteomics ; 20: 100079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33845168

RESUMEN

The extracellular matrix is a key component of tissues, yet it is underrepresented in proteomic datasets. Identification and evaluation of proteins in the extracellular matrix (ECM) has proved challenging due to the insolubility of many ECM proteins in traditional protein extraction buffers. Here we separate the decellularization and ECM extraction steps of several prominent methods for evaluation under real-world conditions. The results are used to optimize a two-fraction ECM extraction method. Approximately one dozen additional parameters are tested, and recommendations for analysis based on overall ECM coverage or specific ECM classes are given. Compared with a standard in-solution digest, the optimized method yielded a fourfold improvement in unique ECM peptide identifications.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteómica/métodos , Animales , Matriz Extracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteoma
18.
J Mol Cell Cardiol ; 171: 45-55, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35780862

RESUMEN

Congenital heart defects are the leading cause of right heart failure in pediatric patients. Implantation of c-kit+ cardiac-derived progenitor cells (CPCs) is being clinically evaluated to treat the failing right ventricle (RV), but faces limitations due to reduced transplant cell survival, low engraftment rates, and low retention. These limitations have been exacerbated due to the nature of cell delivery (narrow needles) and the non-optimal recipient microenvironment (reactive oxygen species (ROS)). Extracellular matrix (ECM) hydrogels derived from porcine left ventricular (LV) myocardium have emerged as a potential therapy to treat the ischemic LV and have shown promise as a vehicle to deliver cells to injured myocardium. However, no studies have evaluated the combination of an injectable biomaterial, such as an ECM hydrogel, in combination with cell therapy for treating RV failure. In this study we characterized LV and RV myocardial matrix (MM) hydrogels and performed in vitro evaluations of their potential to enhance CPC delivery, including resistance to forces experienced during injection and exposure to ROS, as well as their potential to enhance angiogenic paracrine signaling. While physical properties of the two hydrogels are similar, the decellularized LV and RV have distinct protein signatures. Both materials were equally effective in protecting CPCs against needle forces and ROS. CPCs encapsulated in either the LV MM or RV MM exhibited similar enhanced potential for angiogenic paracrine signaling when compared to CPCs in collagen. The RV MM without cells, however, likewise improved tube formation, suggesting it should also be evaluated as a potential standalone treatment.


Asunto(s)
Insuficiencia Cardíaca , Hidrogeles , Animales , Materiales Biocompatibles/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos , Hidrogeles/metabolismo , Miocardio , Especies Reactivas de Oxígeno/metabolismo , Células Madre , Porcinos
19.
Ann Surg ; 276(6): e944-e954, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33214479

RESUMEN

OBJECTIVES: Identify the metabolites that are increased in the plasma of severely injured patients that developed ARDS versus severely injured patients that did not, and assay if these increased metabolites prime pulmonary sequestration of neutrophils (PMNs) and induce pulmonary sequestration in an animal model of ARDS. We hypothesize that metabolic derangement due to advanced shock in critically injured patients leads to the PMNs, which serves as the first event in the ARDS. Summary of Background Data: Intracellular metabolites accumulate in the plasma of severely injured patients. METHODS: Untargeted metabolomics profiling of 67 critically injured patients was completed to establish a metabolic signature associated with ARDS development. Metabolites that significantly increased were assayed for PMN priming activity in vitro. The metabolites that primed PMNs were tested in a 2-event animal model of ARDS to identify a molecular link between circulating metabolites and clinical risk for ARDS. RESULTS: After controlling for confounders, 4 metabolites significantly increased: creatine, dehydroascorbate, fumarate, and succinate in trauma patients who developed ARDS ( P < 0.05). Succinate alone primed the PMN oxidase in vitro at physiologically relevant levels. Intravenous succinate-induced PMN sequestration in the lung, a first event, and followed by intravenous lipopolysaccharide, a second event, resulted in ARDS in vivo requiring PMNs. SUCNR1 inhibition abrogated PMN priming, PMN sequestration, and ARDS. Conclusion: Significant increases in plasma succinate post-injury may serve as the first event in ARDS. Targeted inhibition of the SUCNR1 may decrease ARDS development from other disease states to prevent ARDS globally.


Asunto(s)
Secuestro Broncopulmonar , Síndrome de Dificultad Respiratoria , Animales , Neutrófilos/metabolismo , Ácido Succínico/metabolismo , Secuestro Broncopulmonar/metabolismo , Pulmón
20.
Nat Mater ; 20(4): 548-559, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33257795

RESUMEN

Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma. These tissues harbour the highest number of tumour-associated macrophages, whose therapeutic ablation in experimental models reduced metastasis, and decreased collagen crosslinks and stromal stiffening. Epithelial-targeted expression of the crosslinking enzyme, lysyl oxidase, had no impact on collagen crosslinking in PyMT mammary tumours, whereas stromal cell targeting did. Stromal cells in microdissected human tumours expressed the highest level of collagen crosslinking enzymes. Immunohistochemical analysis of biopsies from a cohort of patients with breast cancer revealed that stromal expression of lysyl hydroxylase 2, an enzyme that induces hydroxylysine aldehyde-derived collagen crosslinks and stromal stiffening, correlated significantly with disease specific mortality. The findings link tissue inflammation, stromal cell-mediated collagen crosslinking and stiffening to tumour aggression and identify lysyl hydroxylase 2 as a stromal biomarker.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Colágeno/metabolismo , Células del Estroma/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Adulto , Biopsia , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Proteína-Lisina 6-Oxidasa/metabolismo , Células del Estroma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA