Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(12): 2961-2983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38758005

RESUMEN

Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Músculo Esquelético , Médula Espinal , Corteza Motora/fisiología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Médula Espinal/fisiología , Adulto , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Estimulación de la Médula Espinal/métodos , Anciano , Estimulación Eléctrica/métodos
2.
J Neurophysiol ; 129(1): 66-82, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36417309

RESUMEN

Although epidural stimulation of the lumbar spinal cord has emerged as a powerful modality for recovery of movement, how it should be targeted to the cervical spinal cord to activate arm and hand muscles is not well understood, particularly in humans. We sought to map muscle responses to posterior epidural cervical spinal cord stimulation in humans. We hypothesized that lateral stimulation over the dorsal root entry zone would be most effective and responses would be strongest in the muscles innervated by the stimulated segment. Twenty-six people undergoing clinically indicated cervical spine surgery consented to mapping of motor responses. During surgery, stimulation was performed in midline and lateral positions at multiple exposed segments; six arm and three leg muscles were recorded on each side of the body. Across all segments and muscles tested, lateral stimulation produced stronger muscle responses than midline despite similar latency and shape of responses. Muscles innervated at a cervical segment had the largest responses from stimulation at that segment, but responses were also observed in muscles innervated at other cervical segments and in leg muscles. The cervical responses were clustered in rostral (C4-C6) and caudal (C7-T1) cervical segments. Strong responses to lateral stimulation are likely due to the proximity of stimulation to afferent axons. Small changes in response sizes to stimulation of adjacent cervical segments argue for local circuit integration, and distant muscle responses suggest activation of long propriospinal connections. This map can help guide cervical stimulation to improve arm and hand function.NEW & NOTEWORTHY A map of muscle responses to cervical epidural stimulation during clinically indicated surgery revealed strongest activation when stimulating laterally compared to midline and revealed differences to be weaker than expected across different segments. In contrast, waveform shapes and latencies were most similar when stimulating midline and laterally, indicating activation of overlapping circuitry. Thus, a map of the cervical spinal cord reveals organization and may help guide stimulation to activate arm and hand muscles strongly and selectively.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Animales , Humanos , Electromiografía , Médula Espinal/fisiología , Músculo Esquelético/fisiología , Miembro Anterior , Estimulación Eléctrica
3.
Curr Opin Neurol ; 36(6): 523-530, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865833

RESUMEN

PURPOSE OF REVIEW: Remote ischemic conditioning (RIC) involves transient blood flow restriction to one limb leading to systemic tissue-protective effects. RIC shares some potential underlying mechanisms with intermittent hypoxia (IH), in which brief bouts of systemic hypoxia trigger increases in growth factor expression and neural plasticity. RIC has shown promise in acute myocardial infarction and stroke but may be applicable toward chronic neuropathology as well. Consequently, this review discusses similarities and differences between RIC and IH and presents preliminary and ongoing research findings regarding RIC. RECENT FINDINGS: Several publications demonstrated that combining RIC with motor training may enhance motor learning in adults with intact nervous systems, though the precise mechanisms were unclear. Our own preliminary data has found that RIC, in conjunction with task specific exercise, can increase corticospinal excitability in a subset of people without neurological injury and in those with chronic cervical spinal cord injury or amyotrophic lateral sclerosis. SUMMARY: RIC is a low-cost intervention easy to deliver in a clinical or home setting. Its potential application to facilitate neural plasticity and motor learning during rehabilitation training for individuals with chronic neurological disorders is a novel concept requiring further investigation to characterize mechanisms, safety, and efficacy.


Asunto(s)
Infarto del Miocardio , Traumatismos de la Médula Espinal , Accidente Cerebrovascular , Adulto , Humanos , Hipoxia
4.
Spinal Cord ; 59(8): 885-893, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34099882

RESUMEN

DESIGN: Prospective cohort study. OBJECTIVES: We aim to better understand the silent period (SP), an inhibitory counterpart to the well-known motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS), in individuals with spinal cord injury (SCI). SETTING: Veterans Affairs Hospital in New York. METHODS: EMG responses were measured in the target abductor pollicis brevis at rest (TMS at 120% of resting motor threshold (RMT)) and during maximal effort (TMS at 110% of RMT). Participants with chronic cervical SCI (n = 9) and AB participants (n = 12) underwent between 3 and 7 sessions of testing on separate days. The primary outcomes were the magnitude and reliability of SP duration, resting and active MEP amplitudes, and RMT. RESULTS: SCI participants showed significantly lower MEP amplitudes compared to AB participants. SCI SP duration was not significantly different from AB SP duration. SP duration demonstrated reduced intra-participant variability within and across sessions compared with MEP amplitudes. SCI participants also demonstrated a higher prevalence of SP 'interruptions' compared to AB participants. CONCLUSIONS: In a small group of individuals with chronic cervical SCI, we confirmed the well-known findings that SCI individuals have lower TMS evoked potential amplitudes and a tendency toward higher TMS motor thresholds relative to able-bodied controls. We did not observe a significant difference in SP duration between individuals with versus without SCI. However, SP duration is a more reliable outcome within and across multiple sessions than MEP amplitude.


Asunto(s)
Traumatismos de la Médula Espinal , Electromiografía , Potenciales Evocados Motores , Humanos , Músculo Esquelético , Estudios Prospectivos , Reproducibilidad de los Resultados , Traumatismos de la Médula Espinal/diagnóstico , Estimulación Magnética Transcraneal
5.
Sensors (Basel) ; 21(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562342

RESUMEN

Sensory feedback from wearables can be effective to learn better movement through enhanced information and engagement. Facilitating greater user cognition during movement practice is critical to accelerate gains in motor function during rehabilitation following brain or spinal cord trauma. This preliminary study presents an approach using an instrumented glove to leverage sense of agency, or perception of control, to provide training feedback for functional grasp. Seventeen able-bodied subjects underwent training and testing with a custom-built sensor glove prototype from our laboratory. The glove utilizes onboard force and flex sensors to provide inputs to an artificial neural network that predicts achievement of "secure" grasp. Onboard visual and audio feedback was provided during training with progressively shorter time delay to induce greater agency by intentional binding, or perceived compression in time between an action (grasp) and sensory consequence (feedback). After training, subjects demonstrated a significant reduction (p < 0.05) in movement pathlength and completion time for a functional task involving grasp-move-place of a small object. Future work will include a model-based algorithm to compute secure grasp, virtual reality immersion, and testing with clinical populations.


Asunto(s)
Fuerza de la Mano , Mano , Retroalimentación , Retroalimentación Sensorial , Humanos , Movimiento
6.
Telemed J E Health ; 27(3): 239-246, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32326849

RESUMEN

Background: Stroke is the leading cause of serious long-term disability in the United States. Barriers to rehabilitation include cost, transportation, lack of trained personnel, and equipment. Telerehabilitation (TR) has emerged as a promising modality to reduce costs, improve accessibility, and retain patient independence. TR allows providers to remotely administer therapy, potentially increasing access to underserved regions. Objectives: To describe types of stroke rehabilitation therapy delivered through TR and to evaluate whether TR is as effective as traditional in-person outpatient therapy in improving satisfaction and poststroke residual deficits such as motor function, speech, and disability. Methods: A literature search of the term "telerehabilitation and stroke" was conducted across three databases. Full-text articles with results pertaining to TR interventions were reviewed. Articles were scored for methodological quality using the PEDro scale. Results: Thirty-four articles with 1,025 patients were included. Types of TR included speech therapy, virtual reality (VR), robotic, community-based, goal setting, and motor training exercises. Frequently measured outcomes included motor function, speech, disability, and satisfaction. All 34 studies reported improvement from baseline after TR therapy. PEDro scores ranged from 2 to 8 with a mean of 4.59 ± 1.94 (on a scale of 0-10). Studies with control interventions, randomized allocation, and blinded assessment had significantly higher PEDro scores. All 15 studies that compared TR with traditional therapy showed equivalent or better functional outcomes. Home-based robotic therapy and VR were less costly than in-person therapy. Patient satisfaction with TR and in-person clinical therapy was similar. Conclusions: TR is less costly and equally as effective as clinic-based rehabilitation at improving functional outcomes in stroke patients. TR produces similar patient satisfaction. TR can be combined with other therapies, including VR, speech, and robotic assistance, or used as an adjuvant to direct in-person care.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Telerrehabilitación , Realidad Virtual , Terapia por Ejercicio , Humanos
7.
Neuromodulation ; 24(3): 405-415, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33794042

RESUMEN

STUDY DESIGN: This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation. OBJECTIVES: 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity. 3) To mitigate Hawthorne effects that may occur in clinical trials with intensive supervised participation, including rehabilitation. MATERIALS AND METHODS: Focused literature review of neuromodulation clinical trials with integration to the specific context of epidural stimulation for persons with chronic spinal cord injury. CONCLUSIONS: Standard of care control groups fail to control for the multiple effects of knowledge of having undergone surgical procedures, having implanted stimulation systems, and being observed in a clinical trial. The irreducible effects that have been identified as "placebo" require sham controls or comparison groups in which both are implanted with potentially active devices and undergo similar rehabilitative training.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Ensayos Clínicos como Asunto , Espacio Epidural , Humanos , Médula Espinal , Traumatismos de la Médula Espinal/terapia
8.
Semin Neurol ; 40(5): 550-559, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32906175

RESUMEN

Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Presión Sanguínea , Enfermedades Cardiovasculares , Frecuencia Cardíaca , Sistema Nervioso Parasimpático , Traumatismos de la Médula Espinal , Sistema Nervioso Simpático , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/epidemiología , Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedades del Sistema Nervioso Autónomo/terapia , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/terapia , Frecuencia Cardíaca/fisiología , Humanos , Sistema Nervioso Parasimpático/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/epidemiología , Traumatismos de la Médula Espinal/terapia , Sistema Nervioso Simpático/fisiopatología
9.
Spinal Cord ; 58(4): 459-466, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31822808

RESUMEN

STUDY DESIGN: Prospective, observational study. OBJECTIVE: To explore the effects of exoskeletal-assisted walking (EAW) on bowel function in persons with spinal cord injury (SCI). SETTING: Ambulatory research facility located in a tertiary care hospital. METHODS: Individuals 18-65 years of age, with thoracic vertebrae one (T1) to T11 motor-complete paraplegia of at least 12 months duration were enrolled. Pre- and post-EAW training, participants were asked to report on various aspects of their bowel function as well as on their overall quality of life (QOL) as related to their bowel function. RESULTS: Ten participants completed 25-63 sessions of EAW over a period of 12-14 weeks, one participant was lost to follow up due to early withdrawal after ten sessions. Due to the small sample size, each participant's results were presented descriptively in a case series format. At least 5/10 participants reported improvements with frequency of bowel evacuations, less time spent on bowel management per bowel day, fewer bowel accidents per month, reduced laxative and/or stool softener use, and improved overall satisfaction with their bowel program post-EAW training. Furthermore, 8/10 reported improved stool consistency and 7/10 reported improved bowel function related QOL. One participant reported worsening of bowel function post-EAW. CONCLUSION: Between 50 and 80% of the participants studied reported improvements in bowel function and/or management post-EAW training. EAW training appeared to mitigate SCI-related bowel dysfunction and the potential benefits of EAW on bowel function after SCI is worthy or further study.


Asunto(s)
Defecación , Dispositivo Exoesqueleto , Paraplejía/rehabilitación , Traumatismos de la Médula Espinal/rehabilitación , Caminata , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paraplejía/etiología , Evaluación del Resultado de la Atención al Paciente , Proyectos Piloto , Estudios Prospectivos , Traumatismos de la Médula Espinal/complicaciones , Adulto Joven
10.
J Neurophysiol ; 122(6): 2331-2343, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577515

RESUMEN

Locomotion requires the continuous integration of descending motor commands and sensory inputs from the legs by spinal central pattern generator circuits. Modulation of spinal neural circuits by transspinal stimulation is well documented, but how transspinal stimulation affects corticospinal excitability during walking in humans remains elusive. We measured the motor evoked potentials (MEPs) at multiple phases of the step cycle conditioned with transspinal stimulation delivered at sub- and suprathreshold intensities of the spinally mediated transspinal evoked potential (TEP). Transspinal stimulation was delivered before or after transcranial magnetic stimulation during which summation between MEP and TEP responses in the surface EMG was absent or present. Relationships between MEP amplitude and background EMG activity, silent period duration, and phase-dependent EMG amplitude modulation during and after stimulation were also determined. Ankle flexor and extensor MEPs were depressed by suprathreshold transspinal stimulation when descending volleys were timed to interact with transspinal stimulation-induced motoneuron depolarization at the spinal cord. MEP depression coincided with decreased MEP gain, unaltered MEP threshold, and unaltered silent period duration. Locomotor EMG activity of bilateral knee and ankle muscles was significantly depressed during the step at which transspinal stimulation was delivered but fully recovered at the subsequent step. The results support a model in which MEP depression by transspinal stimulation occurs via subcortical or spinal mechanisms. Transspinal stimulation disrupts the locomotor output of flexor and extensor motoneurons initially, but the intact nervous system has the ability to rapidly overcome this pronounced locomotor adaptation. In conclusion, transspinal stimulation directly affects spinal locomotor centers in healthy humans.NEW & NOTEWORTHY Lumbar transspinal stimulation decreases ankle flexor and extensor motor evoked potentials (MEPs) during walking. The MEP depression coincides with decreased MEP gain, unaltered MEP threshold changes, and unaltered silent period duration. These findings indicate that MEP depression is subcortical or spinal in origin. Healthy subjects could rapidly overcome the pronounced depression of muscle activity during the step at which transspinal stimulation was delivered. Thus, transspinal stimulation directly affects the function of spinal locomotor networks in healthy humans.


Asunto(s)
Potenciales Evocados Motores/fisiología , Locomoción/fisiología , Red Nerviosa/fisiología , Tractos Piramidales/fisiología , Médula Espinal/fisiología , Adulto , Electromiografía , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal , Caminata/fisiología , Adulto Joven
11.
Neural Plast ; 2016: 7043767, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27800189

RESUMEN

After injury, electrical stimulation of the nervous system can augment plasticity of spared or latent circuits through focal modulation. Pairing stimulation of two parts of a spared circuit can target modulation more specifically to the intended circuit. We discuss 3 kinds of paired stimulation in the context of the corticospinal system, because of its importance in clinical neurorehabilitation. The first uses principles of Hebbian plasticity: by altering the stimulation timing of presynaptic neurons and their postsynaptic targets, synapse function can be modulated up or down. The second form uses synchronized presynaptic inputs onto a common synaptic target. We dub this a "convergent" mechanism, because stimuli have to converge on a common target with coordinated timing. The third form induces focal modulation by tonic excitation of one region (e.g., the spinal cord) during phasic stimulation of another (e.g., motor cortex). Additionally, endogenous neural activity may be paired with exogenous electrical stimulation. This review addresses what is known about paired stimulation of the corticospinal system of both humans and animal models, emphasizes how it qualitatively differs from single-site stimulation, and discusses the gaps in knowledge that must be addressed to maximize its use and efficacy in neurorehabilitation.


Asunto(s)
Vías Eferentes/fisiopatología , Estimulación Eléctrica , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiopatología , Neuronas Motoras/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Humanos , Corteza Motora/fisiología , Traumatismos de la Médula Espinal/terapia
12.
13.
J Spinal Cord Med ; 36(4): 313-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23820147

RESUMEN

OBJECTIVE: To use vertical ground reaction force (vGRF) to show the magnitude and pattern of mechanical loading in persons with spinal cord injury (SCI) during powered exoskeleton-assisted walking. RESEARCH DESIGN: A cross-sectional study was performed to analyze vGRF during powered exoskeleton-assisted walking (ReWalk™: Argo Medical Technologies, Inc, Marlborough, MA, USA) compared with vGRF of able-bodied gait. SETTING: Veterans Affairs Medical Center. PARTICIPANTS: Six persons with thoracic motor-complete SCI (T1-T11 AIS A/B) and three age-, height-, weight- and gender-matched able-bodied volunteers participated. INTERVENTIONS: SCI participants were trained to ambulate over ground using a ReWalk™. vGRF was recorded using the F-Scan™ system (TekScan, Boston, MA, USA). OUTCOME MEASURES: Peak stance average (PSA) was computed from vGRF and normalized across all participants by percent body weight. Peak vGRF was determined for heel strike, mid-stance, and toe-off. Relative linear impulse and harmonic analysis provided quantitative support for analysis of powered exoskeletal gait. RESULTS: Participants with motor-complete SCI, ambulating independently with a ReWalk™, demonstrated mechanical loading magnitudes and patterns similar to able-bodied gait. Harmonic analysis of PSA profile by Fourier transform contrasted frequency of stance phase gait components between able-bodied and powered exoskeleton-assisted walking. CONCLUSION: Powered exoskeleton-assisted walking in persons with motor-complete SCI generated vGRF similar in magnitude and pattern to that of able-bodied walking. This suggests the potential for powered exoskeleton-assisted walking to provide a mechanism for mechanical loading to the lower extremities. vGRF profile can be used to examine both magnitude of loading and gait mechanics of powered exoskeleton-assisted walking among participants of different weight, gait speed, and level of assist.


Asunto(s)
Aparatos Ortopédicos , Paraplejía/rehabilitación , Dispositivos de Autoayuda , Caminata/fisiología , Adulto , Femenino , Marcha , Humanos , Extremidad Inferior/fisiopatología , Masculino , Persona de Mediana Edad , Paraplejía/etiología , Rango del Movimiento Articular , Traumatismos de la Médula Espinal/complicaciones , Veteranos , Adulto Joven
14.
J Spinal Cord Med ; 36(2): 127-33, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23809527

RESUMEN

BACKGROUND: The ability to retain or improve seated balance function after spinal cord injury (SCI) may mean the difference between independence and requiring assistance for basic activities of daily living. Compared with assessments of standing and walking balance, seated balance assessments remain relatively underemphasized and under-utilized. OBJECTIVE: To optimize tools for assessing seated balance deficits and recovery in SCI. DESIGN: Cross-sectional observational study of different methods for assessing seated balance function. SETTING: Veterans Affairs Center of Excellence for the Medical Consequences of Spinal Cord Injury. PARTICIPANTS: Seven able-bodied volunteers, seven participants with chronic motor-complete thoracic SCI. INTERVENTIONS: A computerized pressure-plate apparatus designed for testing standing balance was adapted into a seated balance assessment system. OUTCOME MEASURES: Seated section of Berg Balance Scale; modified functional reach test; and two posturography tests: limits of stability and clinical test of sensory integration on balance. RESULTS: Seated posturography demonstrated improved correlation with neurological level of lesion compared to that of routinely applied subjective clinical tests. CONCLUSION: Seated posturography represents an appealing outcome measure that may be applied toward the measurement of functional changes in response to various rehabilitation interventions in individuals with paralysis.


Asunto(s)
Técnicas y Procedimientos Diagnósticos/instrumentación , Modalidades de Fisioterapia/instrumentación , Equilibrio Postural , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Traumatismos de la Médula Espinal/complicaciones , Adulto Joven
15.
Res Sq ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824823

RESUMEN

Background: The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. Methods: Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30-minutes of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30-minutes of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder and sexual function are taken. Discussion: The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. Trial registration: ClinicalTrials.gov: NCT04807764; Registered on March 19, 2021.

16.
Trials ; 24(1): 145, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841773

RESUMEN

BACKGROUND: The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. METHODS: Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken. DISCUSSION: The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. TRIAL REGISTRATION: ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Electromiografía , Médula Espinal , Caminata/fisiología , Modalidades de Fisioterapia , Estimulación de la Médula Espinal/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Sci Rep ; 13(1): 5434, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012257

RESUMEN

Multiple types and classes of medications are administered in the acute management of traumatic spinal cord injury. Prior clinical studies and evidence from animal models suggest that several of these medications could modify (i.e., enhance or impede) neurological recovery. We aimed to systematically determine the types of medications commonly administered, alone or in combination, in the transition from acute to subacute spinal cord injury. For that purpose, type, class, dosage, timing, and reason for administration were extracted from two large spinal cord injury datasets. Descriptive statistics were used to describe the medications administered within the first 60 days after spinal cord injury. Across 2040 individuals with spinal cord injury, 775 unique medications were administered within the two months after injury. On average, patients enrolled in a clinical trial were administered 9.9 ± 4.9 (range 0-34), 14.3 ± 6.3 (range 1-40), 18.6 ± 8.2 (range 0-58), and 21.5 ± 9.7 (range 0-59) medications within the first 7, 14, 30, and 60 days post-injury, respectively. Those enrolled in an observational study were administered on average 1.7 ± 1.7 (range 0-11), 3.7 ± 3.7 (range 0-24), 8.5 ± 6.3 (range 0-42), and 13.5 ± 8.3 (range 0-52) medications within the first 7, 14, 30, and 60 days post-injury, respectively. Polypharmacy was commonplace (up to 43 medications per day per patient). Approximately 10% of medications were administered acutely as prophylaxis (e.g., against the development of pain or infections). To our knowledge, this was the first time acute pharmacological practices have been comprehensively examined after spinal cord injury. Our study revealed a high degree of polypharmacy in the acute stages of spinal cord injury, raising the potential to impact neurological recovery. All results can be interactively explored on the RXSCI web site ( https://jutzelec.shinyapps.io/RxSCI/ ) and GitHub repository ( https://github.com/jutzca/Acute-Pharmacological-Treatment-in-SCI/ ).


Asunto(s)
Traumatismos de la Médula Espinal , Animales , Recuperación de la Función , Estudios de Cohortes , Traumatismos de la Médula Espinal/tratamiento farmacológico , Estudios Longitudinales , Dolor , Médula Espinal
18.
Neurotrauma Rep ; 4(1): 838-847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156073

RESUMEN

Transcutaneous spinal cord stimulation (tSCS) is an emerging therapeutic strategy to target spinal autonomic circuitry to normalize and stabilize blood pressure (BP) in hypotensive persons living with chronic spinal cord injury (SCI). Our aim is to describe our current methodological approach to identify individual tSCS parameters that result in the maintenance of seated systolic blood pressure (SBP) within a pre-defined target range. The parent study is a prospective, randomized clinical trial in which eligible participants will undergo multiple mapping sessions to optimize tSCS parameter settings to promote stable SBP within a target range of 110-120 mm Hg for males and 100-120 mm Hg for females. Parameter mapping includes cathode electrode placement site (T7/8, T9/10, T11/12, and L1/2), stimulation frequency (30, 60 Hz), current amplitudes (0-120 mA), waveform (mono- and biphasic), pulse width (1000 µs), and use of carrier frequency (0, 10 kHz). Each participant will undergo up to 10 mapping sessions involving different electrode placement sites and parameter settings. BP will be continuously monitored throughout each mapping session. Stimulation amplitude (mA) will be increased at intervals of between 2 and 10 mA until one of the following occurs: 1) seated SBP reaches the target range; 2) tSCS intensity reaches 120 mA; or 3) the participant requests to stop. Secondary outcomes recorded include 1) symptoms related to autonomic dysreflexia and orthostatic hypotension, 2) Likert pain scale, and 3) skin appearance after removal of the tSCS electrode. Clinical Trials Registration: NCT05180227.

19.
medRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37645795

RESUMEN

Volitional movement requires descending input from motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans it is not known whether dorsal epidural SCS targeted at the sensorimotor interface or anterior epidural SCS targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord with epidural electrodes while muscle responses were recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, paired stimulation effects were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation.

20.
Ann Neurol ; 70(5): 805-21, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22162062

RESUMEN

OBJECTIVE: Several interventions promote axonal growth and functional recovery when initiated shortly after central nervous system injury, including blockade of myelin-derived inhibitors with soluble Nogo receptor (NgR1, RTN4R) decoy protein. We examined the efficacy of this intervention in the much more prevalent and refractory condition of chronic spinal cord injury. METHODS: We eliminated the NgR1 pathway genetically in mice by conditional gene targeting starting 8 weeks after spinal hemisection injury and monitored locomotion in the open field and by video kinematics over the ensuing 4 months. In a separate pharmacological experiment, intrathecal NgR1 decoy protein administration was initiated 3 months after spinal cord contusion injury. Locomotion and raphespinal axon growth were assessed during 3 months of treatment between 4 and 6 months after contusion injury. RESULTS: Conditional deletion of NgR1 in the chronic state results in gradual improvement of motor function accompanied by increased density of raphespinal axons in the caudal spinal cord. In chronic rat spinal contusion, NgR1 decoy treatment from 4 to 6 months after injury results in 29% (10 of 35) of rats recovering weight-bearing status compared to 0% (0 of 29) of control rats (p < 0.05). Open field Basso, Beattie, and Bresnahan locomotor scores showed a significant improvement in the NgR-treated group relative to the control group (p < 0.005, repeated measures analysis of variance). An increase in raphespinal axon density caudal to the injury is detected in NgR1 decoy-treated animals by immunohistology and by positron emission tomography using a serotonin reuptake ligand. INTERPRETATION: Antagonizing myelin-derived inhibitors signaling with NgR1 decoy augments recovery from chronic spinal cord injury.


Asunto(s)
Axones/efectos de los fármacos , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Inyecciones Espinales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Mielina/deficiencia , Proteínas de la Mielina/genética , Pruebas Neuropsicológicas , Proteínas Nogo , Proteínas Recombinantes de Fusión/administración & dosificación , Traumatismos de la Médula Espinal/metabolismo , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA