Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 105(3): 2119-2131, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34955253

RESUMEN

High-pressure-jet (HPJ) processing of various dairy systems has been shown to disrupt fat droplets and casein micelles and cause a strong association between fat and casein proteins. The present work seeks to better describe this association between fat and casein using a model milk formulated from confectionary coating fat (3.6% wt/wt), micellar casein (3.4% wt/wt), and water (93% wt/wt), which was then pasteurized, homogenized, and then either HPJ-treated (400 MPa) or not (non-HPJ-treated, control). Upon ultracentrifugation, fat in the non-HPJ-treated model milk creamed due to its low density. In the HPJ-treated model milk, fat precipitated with protein into a thick bottom layer upon ultracentrifugation, reflecting a strong association between protein and fat. Differential scanning calorimetry (DSC) and time-domain nuclear magnetic resonance of the non-HPJ-treated model milk revealed fat in 2 physical states: (1) fat that is physically similar to the bulk fat and (2) fat that was in smaller droplets (i.e., homogenized) and crystallized at a lower temperature than the bulk fat. In contrast, DSC of HPJ-treated model milks supported the presence of fat in 3 states: (1) fat that is physically similar to the bulk fat, (2) fat in small droplets that required substantial supercooling beyond the non-HPJ-treated model milk to crystallize, and (3) fat in such small domains that it crystallizes in a less stable polymorphic form than the non-HPJ-treated model milk (or does not crystallize at all). The state of fat within the HPJ-treated model milk changed minimally with acidification, indicating that the association is not dependent on the charge on the casein. Cryogenic transmission electron microscopy (Cryo-TEM) of the non-HPJ-treated model milk revealed uniform casein micelles, which likely adsorbed to the surface of fat globules post-homogenization. In contrast, Cryo-TEM of the HPJ-treated model milk revealed a porous protein aggregate that likely had dispersed fat throughout. Together, these results suggest that HPJ treatment causes fat to be entrapped by casein proteins in very small domains.


Asunto(s)
Caseínas , Leche , Animales , Caseínas/química , Gotas Lipídicas , Micelas , Leche/química
2.
J Dairy Sci ; 105(1): 32-39, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34600713

RESUMEN

The objective of this study was to determine the effect of adding low concentrations of calcium-binding salts on the prevention of low-temperature gelation in milk protein concentrates (MPC). The MPC were created by a combination of ultrafiltration and diafiltration, standardized from 14 to 17% (wt/vol) protein content and mixed with one of 5 calcium-binding salts (sodium citrate, sodium hexametaphosphate, sodium polyphosphate, sodium pyrophosphate, and sodium monophosphate) adjusted to a pH of 6.75. The flow properties, apparent viscosity, and gel strength were determined for MPC containing a wide range of calcium-binding salt concentrations. Low-temperature gelation occurred in MPC with 16.0% and higher protein content. Low-temperature gelation at 16.0% protein content was prevented by the addition of any of the 5 salts tested at low concentrations (0.30 mM or less; sodium citrate, sodium hexametaphosphate, sodium polyphosphate, sodium pyrophosphate or sodium monophosphate), with sodium polyphosphate and sodium monophosphate being the most consistent in preventing low-temperature gels. All MPC samples exhibited shear-thinning behavior (n = 0.52-0.72), which increased (lower n values) as the protein content increased and decreased by addition of salt. At concentrations of salt above 1.00 mM, thermally irreversible gels were observed with relative strength dependent on the salt and protein content.


Asunto(s)
Calcio , Proteínas de la Leche , Animales , Caseínas , Geles , Concentración de Iones de Hidrógeno , Proteínas de la Leche/análisis , Sales (Química) , Temperatura
3.
J Dairy Sci ; 105(9): 7230-7241, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879172

RESUMEN

Ionic conditions affect the denaturation and gelling of whey proteins, affecting the physical properties of foods in which proteins are used as ingredients. We comprehensively investigated the effect of the presence of commonly used emulsifying salts on the denaturation and gelling properties of concentrated solutions of ß-lactoglobulin (ß-LG) and whey protein isolate (WPI). The denaturation temperature in water was 73.5°C [coefficient of variation (CV) 0.49%], 71.8°C (CV 0.38%), and 69.9°C (CV 0.41%) for ß-LG (14% wt/wt), ß-LG (30% wt/wt), and WPI (30% wt/wt), respectively. Increasing the concentration of salts, except for sodium hexametaphosphate, resulted in a linear increase in the denaturation temperature of WPI (kosmotropic behavior) and an acceleration in its gelling rate. Sodium chloride and tartrate salts exhibited the strongest effect in protecting WPI against thermal denaturation. Despite the constant initial pH of all solutions, salts having buffering capacity (e.g., phosphate and citrate salts) prevented a decrease in pH as the temperature increased above 70°C, resulting in a decline in denaturation temperature at low salt concentrations (≤0.2 mol/g). When pH was kept constant at denaturation temperature, all salts except sodium hexametaphosphate, which exhibited chaotropic behavior, exhibited similar effects on denaturation temperature. At low salt concentration, gelation was the controlling step, occurring up to 10°C above denaturation temperature. At high salt concentration (>3% wt/wt), thermal denaturation was the controlling step, with gelation occurring immediately after. These results indicate that the ionic and buffering properties of salts added to milk will determine the native versus denatured state and gelation of whey proteins in systems subjected to high temperature, short time processing (72°C for 15 s).


Asunto(s)
Proteínas de la Leche , Sales (Química) , Animales , Geles/química , Calor , Concentración de Iones de Hidrógeno , Lactoglobulinas/química , Proteínas de la Leche/análisis , Concentración Osmolar , Desnaturalización Proteica , Cloruro de Sodio , Temperatura , Proteína de Suero de Leche
4.
J Dairy Sci ; 105(9): 7266-7275, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931485

RESUMEN

The effect of ethanol on milk has been shown to be temperature-dependent, with higher ethanol concentrations and temperatures reversibly dissociating casein micelles. This work looked to expand on this knowledge, while also demonstrating the efficiency and precision of a custom-made continuous monitoring unit that combines solutions at defined concentrations and temperatures while measuring various parameters (i.e., absorbance, fluorescence, pressure). Caseins were found to self-associate at moderate ethanol concentrations (i.e., 12-36% vol/vol ethanol); however, they dissociated and remained in the serum at higher ethanol concentrations (≥48% vol/vol) and temperatures (24 and 34°C). Although serum casein content was found to be positively correlated with protein hydrophobicity, the addition of ethanol only increased protein hydrophobicity when the sample was held at high temperatures (34-64°C). Overall, the greatest dissociation of casein micelles was found between 40 and 60% (vol/vol) ethanol concentration at elevated temperatures (≥34°C). At these ethanol concentrations and temperatures, skim milk absorbance was minimized, serum casein content (including ß-casein content) was maximized, and protein hydrophobicity reached a relative maximum.


Asunto(s)
Caseínas , Micelas , Animales , Etanol/farmacología , Concentración de Iones de Hidrógeno , Leche
5.
Eur J Nutr ; 60(8): 4439-4452, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34081167

RESUMEN

PURPOSE: This study investigated metabolic benefits of protein hydrolysates from the macroalgae Palmaria palmata, previously shown to inhibit dipeptidylpeptidase-4 (DPP-4) activity in vitro. METHODS: Previously, Alcalase/Flavourzyme-produced P. palmata protein hydrolysate (PPPH) improved glycaemia and insulin production in streptozotocin-induced diabetic mice. Here the PPPH, was compared to alternative Alcalase, bromelain and Promod-derived hydrolysates and an unhydrolysed control. All PPPH's underwent simulated gastrointestinal digestion (SGID) to establish oral bioavailability. PPPH's and their SGID counterparts were tested in pancreatic, clonal BRIN-BD11 cells to assess their insulinotropic effect and associated intracellular mechanisms. PPPH actions on the incretin effect were assessed via measurement of DPP-4 activity, coupled with GLP-1 and GIP release from GLUTag and STC-1 cells, respectively. Acute in vivo effects of Alcalase/Flavourzyme PPPH administration on glucose tolerance and satiety were assessed in overnight-fasted mice. RESULTS: PPPH's (0.02-2.5 mg/ml) elicited varying insulinotropic effects (p < 0.05-0.001). SGID of the unhydrolysed protein control, bromelain and Promod PPPH's retained, or improved, bioactivity regarding insulin secretion, DPP-4 inhibition and GIP release. Insulinotropic effects were retained for all SGID-hydrolysates at higher PPPH concentrations. DPP-4 inhibitory effects were confirmed for all PPPH's and SGID counterparts (p < 0.05-0.001). PPPH's were shown to directly influence the incretin effect via upregulated GLP-1 and GIP (p < 0.01-0.001) secretion in vitro, largely retained after SGID. Alcalase/Flavourzyme PPPH produced the greatest elevation in cAMP (p < 0.001, 1.7-fold), which was fully retained post-SGID. This hydrolysate elicited elevations in intracellular calcium (p < 0.01) and membrane potential (p < 0.001). In acute in vivo settings, Alcalase/Flavourzyme PPPH improved glucose tolerance (p < 0.01-0.001) and satiety (p < 0.05-0.001). CONCLUSION: Bioavailable PPPH peptides may be useful for the management of T2DM and obesity.


Asunto(s)
Diabetes Mellitus Experimental , Péptido 1 Similar al Glucagón , Animales , Glucemia , Polipéptido Inhibidor Gástrico , Incretinas , Insulina/metabolismo , Ratones , Hidrolisados de Proteína , Regulación hacia Arriba
6.
J Dairy Sci ; 104(3): 2843-2854, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33461820

RESUMEN

The effect of high-pressure-jet (HPJ) processing (0-500 MPa) on low-fat (6% fat) ice cream was studied by evaluating physiochemical properties before freezing, during dynamic freezing, and after hardening. An HPJ treatment ≥400 MPa decreased the density, increased the apparent size of colloidal particles, and altered rheological behavior (increased non-Newtonian behavior and consistency coefficients) of low-fat ice cream mix before freezing. During dynamic freezing, the particle size and consistency coefficient decreased but remained higher in 400 MPa-treated samples vs. non-HPJ-treated controls at the conclusion of freezing. The resulting ice creams (400 and 500 MPa-treated) had similar hardness values (3,372 ± 25 and 3,825 ± 14 g) and increased melting rates (2.91 ± 0.13 and 2.61 ± 0.31 g/min) compared with a control sample containing polysorbate 80 (3,887 ± 2 and 1.62 ± 0.25 g/min). Visualization of ice cream samples using transmission electron microscopy provided evidence of casein micelle and fat droplet disruption by HPJ treatment ≥400 MPa. In the 400 MPa-treated samples, a unique microstructure consisting of dispersed protein congregated around coalesced fat globules likely contributed to the altered physiochemical properties of this ice cream. High-pressure-jet processing can alter the microstructure, rheological properties, and hardness of a low-fat ice cream, and further modification of the formulation and processing parameters may allow the development of products with enhanced properties.


Asunto(s)
Helados , Animales , Caseínas , Manipulación de Alimentos , Congelación , Helados/análisis , Cinética , Viscosidad
7.
J Dairy Sci ; 104(11): 11432-11441, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34419273

RESUMEN

Fat-free chocolate milk formulations containing skim milk, cocoa powder, and sugar were thermally treated and then processed using high-pressure jet (HPJ) technology from 125 to 500 MPa. The rheological properties and stability of HPJ-treated chocolate milks were compared with controls (no HPJ processing) prepared both with and without added κ-carrageenan. As expected, carrageenan-free chocolate milk exhibited immediate phase separation of the cocoa powder, whereas formulations containing κ-carrageenan were stable for 14 d. An increased stability was observed with increasing HPJ processing pressure, with a maximum observed when chocolate milk was processed at 500 MPa. The apparent viscosity at 50 s-1 of HPJ-processed samples increased from ~3 mPa·s to ~9 mPa·s with increasing pressure, and shear-thinning behavior (n < 0.9) was observed for samples processed at HPJ pressures ≥250 MPa. We suggest that HPJ-induced structural changes in casein micelles and new casein-cocoa interactions increased cocoa stability in the chocolate milk. Because casein seemed to be the major component enhancing cocoa stability in HPJ-treated samples, a second study was conducted to determine the effect of additional micellar casein (1, 2, or 4%) and HPJ processing (0-500 MPa) on the stability of fat-free chocolate milk. Formulations with 4% micellar casein processed at 375 and 500 MPa showed no phase separation over a 14-d storage period at 4°C. The addition of micellar casein together with HPJ processing at 500 MPa resulted in a higher apparent viscosity (~17 mPa·s at 50s-1) and more pronounced shear-thinning behavior (n ≤ 0.81) compared with that without added micellar casein. The use of HPJ technology to improve the dispersion stability of cocoa provides the industry with a processing alternative to produce clean-label, yet stable, chocolate milk.


Asunto(s)
Cacao , Chocolate , Animales , Caseínas , Leche , Viscosidad
8.
J Dairy Sci ; 102(8): 6820-6829, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31178183

RESUMEN

We investigated the effect of different phosphate salts on the structural integrity of micellar casein (MC) at pH 7.0. With the increase of salt concentration, a reduction in turbidity was observed for the MC solutions, and it was modeled using an exponential decay function. The inflection point of the model was defined as the first critical salt concentration (C*), and it is suggested that the salt concentration initiates the disintegration of MC. For linear polyphosphates, C* decreased with the number of phosphate groups. Apparent viscosity (ηapp) of MC solutions increased with the increase of salt concentration, and they recorded a peak while the turbidity decreased to a minimum. The salt concentration that resulted in the highest ηapp was identified as the second critical salt concentration (C**). It is hypothesized that the interactions among protein species present in the mixtures are at an optimum state at C**. Both C* and C** were found to be dependent on the MC concentration. The work presented herein supports an understanding of the concentration effect of phosphate salts on MC for structuring dairy products.


Asunto(s)
Caseínas/química , Micelas , Fosfatos/análisis , Animales , Elasticidad , Concentración de Iones de Hidrógeno , Nefelometría y Turbidimetría , Sales (Química)/química , Soluciones/química , Viscosidad
9.
J Dairy Sci ; 101(5): 3887-3899, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29477512

RESUMEN

The processing of milk using high-pressure technologies has been shown to dissociate casein micelles, denature whey proteins, and change the appearance and rheological properties of milk. A novel high-pressure processing technology called high-pressure-jet (HPJ) processing is currently being investigated for use in the food industry. Few studies have evaluated the effects of HPJ technology on dairy foods. The present study investigated the physicochemical and foaming properties of homogenized pasteurized whole milk processed at pressures from 0 to 500 MPa using HPJ processing. The apparent particle size exhibited a monomodal distribution in whole milk samples processed up to 125 MPa and a bimodal distribution for samples processed at 250, 375, and 500 MPa. The viscosity increased from approximately 2 to 5 mPa·s when whole milk was processed using HPJ at 375 MPa, and foam expansion increased from approximately 80 to 140% after processing at >125 MPa. Foam stability was limited to pressures in the 375 to 500 MPa range. We hypothesized that the increase in apparent particle size was due to the dissociation of casein micelles into surface-active casein protein monomers, and the formation of casein-casein and casein-fat particles. Ultracentrifugation of samples into 3 milk fractions (supernatant, serum, and precipitate), and subsequent fat and protein analysis on the 3 fractions, showed that a strong interaction between casein proteins and fat triglycerides occurred, evidenced by the increase in fat content associated with the precipitate fraction with increasing pressure. This suggests that stable casein-fat aggregates are formed when whole milk is processed using HPJ at pressure >125 MPa.


Asunto(s)
Leche/química , Pasteurización/métodos , Animales , Caseínas/química , Bovinos , Tamaño de la Partícula , Pasteurización/instrumentación , Presión , Reología , Viscosidad , Proteína de Suero de Leche/química
10.
J Dairy Sci ; 101(10): 8672-8687, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30031576

RESUMEN

A known biological role of casein micelles is to transport calcium from mother to young and provide amino acids for growth and development. Previous reports demonstrated that modified casein micelles can be used to transport and deliver hydrophobic probes. In this study, the distribution of lipid-soluble phospholipids, including sphingomyelins (SM) and phosphatidylcholines (PC), was quantified in whole raw milk, skim raw milk, and casein micelles of various sizes during early, mid, and late lactation stages. Low-pressure size exclusion chromatography was used to separate casein micelles by size, followed by hydrophobic extraction and liquid chromatography-mass spectrometry for the quantification of PC and SM. Results showed that the SM d18:1/23:0, d18:1/22:0, d18:1/16:0, d16:1/22:0, d16:1/23:0, and d18:1/24:0 and the PC 16:0/18:1, 18:0/18:2, and 16:0/16:0 were dominating candidates appearing in maximum concentration in whole raw milk obtained from late lactation, with 21 to 50% of total SM and 16 to 35% of total PC appearing in skim milk. Of the total SM and PC found in skim milk, 35 to 46% of SM and 22 to 29% of PC were associated with the casein micelle fraction. The highest concentrations of SM d18:1/22:0 (341 ± 17 µg/g of casein protein) and PC 16:0/18:1 (180 ± 20 µg/g of casein protein) were found to be associated with the largest casein micelles (diameter = 149 nm) isolated in milk from late lactation, followed by a decrease in concentration as the casein micelle size decreased.


Asunto(s)
Caseínas/análisis , Bovinos , Lactancia/fisiología , Micelas , Leche/química , Animales , Femenino , Tamaño de la Partícula , Fosfolípidos
11.
J Dairy Sci ; 100(6): 4241-4252, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28434743

RESUMEN

Solutions of 10 commonly used emulsifying salts (ES) listed in the Code of Federal Regulations (21CFR133.179) for pasteurized process cheese were tested for their effect on the turbidity of a diluted milk system at different pH and protein concentrations to characterize the conditions that affect micellar structure. Emulsifying salt solutions were made by mixing the ES in a 1-in-20 dilution of water in skim milk ultrafiltrate (3 kDa molecular weight cut-off) to obtain ES concentrations from 0 to 248 mM. Skim milk was added to solutions containing nanopure water, skim milk ultrafiltrate, and a specific ES ranging in concentration from 0 to 248 mM and pH 5, 5.8, 6.8, 7.8, and 8.8. The turbidity of the samples was measured as the optical density at 400 nm immediately after mixing (time, t = 0), after 30 s (t = 30s), and after 30 min (t = 30min). Emulsifying salts were found to cause a decrease in the turbidity of the system, which was modeled using an exponential decay model, where C* represents a threshold salt concentration at which rapid dissociation occurs. At pH values 5.8 and 6.8, the ES caused the greatest decrease in turbidity of the diluted milk system. At pH 5, the ES had the least effect on the turbidity of the system. Sodium hexametaphosphate was found to have the strongest dissociative effect, with a C* value of 0.33 mM for t = 0 at pH 6.8. In contrast, the largest C* value calculated at pH 6.8 was monosodium phosphate at 278.22 mM. Increased time resulted in lower C* values. The model established for this study can be used to predict the dissociation of casein micelles in the presence of various types of ES.


Asunto(s)
Caseínas/efectos de los fármacos , Emulsionantes/farmacología , Micelas , Proteínas de la Leche/análisis , Leche/efectos de los fármacos , Nefelometría y Turbidimetría , Animales , Caseínas/química , Queso , Concentración de Iones de Hidrógeno , Leche/química , Soluciones , Agua
12.
J Dairy Sci ; 100(11): 8670-8679, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28918155

RESUMEN

Casein proteins (αS1-, αS2-, ß- and κ-casein) account for 80% of the total protein content in bovine milk and form casein micelles (average diameter = 130 nm, approximately 1015 micelles/mL). The affinity of native casein micelles with the 3 hydrophobic active pharmaceutical ingredients (API), meloxicam [351.4 g/mol; log P = 3.43; acid dissociation constant (pKa) = 4.08], flunixin (296.2 g/mol; log P = 4.1; pKa = 5.82), and thiabendazole (201.2 g/mol; log P = 2.92; pKa = 4.64), was evaluated in bovine milk collected from dosed Holstein cows. Native casein micelles were separated from raw bovine milk by mild techniques such as ultracentrifugation, diafiltration, isoelectric point precipitation (pH 4.6), and size exclusion chromatography. Acetonitrile extraction of hydrophobic API was then done, followed by quantification using HPLC-UV. For the API or metabolites meloxicam, 5-hyroxy flunixin and 5-hydroxy thiabendazole, 31 ± 3.90, 31 ± 1.3, and 28 ± 0.5% of the content in milk was associated with casein micelles, respectively. Less than ∼5.0% of the recovered hydrophobic API were found in the milk fat fraction, and the remaining ∼65% were associated with the whey/serum fraction. A separate in vitro study showed that 66 ± 6.4% of meloxicam, 29 ± 0.58% of flunixin, 34 ± 0.21% of the metabolite 5-hyroxy flunixin, 50 ± 4.5% of thiabendazole, and 33 ± 3.8% of metabolite 5-hydroxy thiabendazole was found partitioned into casein micelles. Our study supports the hypothesis that casein micelles are native carriers for hydrophobic compounds in bovine milk.


Asunto(s)
Caseínas/metabolismo , Clonixina/análogos & derivados , Leche/química , Tiabendazol/metabolismo , Tiazinas/metabolismo , Tiazoles/metabolismo , Animales , Bovinos , Clonixina/metabolismo , Suplementos Dietéticos , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Meloxicam , Micelas , Unión Proteica , Suero Lácteo/metabolismo , Proteína de Suero de Leche/metabolismo
13.
Diabetes Obes Metab ; 18(10): 1013-24, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27357054

RESUMEN

AIMS: To investigate the antidiabetic actions of three dogfish glucagon peptide analogues [known glucagon-like peptide-1 and glucagon receptor co-agonists] after chronic administration in diet-induced high-fat-diet-fed diabetic mice. MATERIALS AND METHODS: National Institutes of Health Swiss mice were pre-conditioned to a high-fat diet (45% fat) for 100 days, and control mice were fed a normal diet (10% fat). Normal diet control and high-fat-fed control mice received twice-daily intraperitoneal (i.p.) saline injections, while the high-fat-fed treatment groups (n = 8) received twice-daily injections of exendin-4(1-39), [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39) or [S2a]dogfish glucagon-Lys(30) -γ-glutamyl-PAL (25 nmol/kg body weight) for 51 days. RESULTS: After dogfish glucagon analogue treatment, there was a rapid and sustained decrease in non-fasting blood glucose and an associated insulinotropic effect (analysis of variance, p < .05 to <.001) compared with saline-treated high-fat-fed controls. All peptide treatments significantly improved i.p. and oral glucose tolerance with concomitant increased insulin secretion compared with saline-treated high-fat-fed controls (p <.05 to <.001). After chronic treatment, no receptor desensitization was observed but insulin sensitivity was enhanced for all peptide-treated groups (p < .01 to <.001) except [S2a]dogfish glucagon. Both exendin-4 and [S2a]dogfish glucagon exendin-4(31-39) significantly reduced plasma triglyceride concentrations compared with those found in lean controls (p = .0105 and p = .0048, respectively). Pancreatic insulin content was not affected by peptide treatments but [S2a]dogfish glucagon and [S2a]dogfish glucagon exendin-4(31-39) decreased pancreatic glucagon by 28%-34% (p = .0221 and p = .0075, respectively). The percentage of ß-cell area within islets was increased by exendin-4 and peptide analogue treatment groups compared with high-fat-fed controls and the ß-cell area decreased (p < .05 to <.01). CONCLUSIONS: Overall, dogfish glucagon co-agonist analogues had several beneficial metabolic effects, showing therapeutic potential for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Glucagón/farmacología , Hiperglucemia/prevención & control , Insulina/metabolismo , Insulina/fisiología , Obesidad/metabolismo , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/complicaciones , Dieta Alta en Grasa , Cazón/metabolismo , Glucagón/análogos & derivados , Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Hiperglucemia/complicaciones , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Obesos , Obesidad/etiología
14.
J Dairy Sci ; 99(12): 9732-9744, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27771079

RESUMEN

The metabolites of choline have a central role in many mammalian biological processes, and choline supplementation to the periparturient dairy cow improves hepatic lipid metabolism. However, variability in responses to choline supplementation has highlighted a lack of understanding of choline absorption in the lactating dairy cow. Our objective was to determine net choline absorption by measuring net portal fluxes of choline and choline metabolites in cows receiving either dietary supplements of rumen-protected choline (RPC) or abomasal delivery of choline (ADC). We also evaluated markers for choline bioavailability by examining relationships between net portal absorption of choline and choline metabolites in plasma and milk. Five late-lactation Holstein cows were used in a 5×5 Latin square design, with 5-d treatment periods and a 2-d interval between periods. Treatments were (1) control (0g/d of choline), (2) 12.5g/d of choline fed as RPC, (3) 25g/d of choline fed as RPC, (4) 12.5g/d of choline provided as ADC, and (5) 25g/d of choline provided as ADC. At the end of each 5-d period, milk was sampled and 9 blood samples were collected simultaneously from an artery and portal vein at 30-min intervals. Plasma, milk, and feed ingredient concentrations of acetylcholine, betaine, free choline, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine, and sphingomyelin were quantified by hydrophilic interaction liquid chromatography-tandem mass spectrometry. With an increasing dose of ADC, the net portal flux of free choline increased and regression analysis indicated 61% net absorption of the infused dose. Among the choline metabolites, only concentrations of betaine, free choline, and phosphocholine increased in both arterial plasma (3.9, 1.9, and 0.4 times, respectively) and milk (2.5, 1.4, and 1.0 times, respectively) with 25g/d of ADC relative to the control. For RPC, the net portal flux of free choline was low relative to ADC (13%), which was similar to the relative difference observed in the concentrations and yields of milk free choline and betaine (averaged 21%). When evaluating markers for choline bioavailability, betaine was the leading candidate. Betaine in plasma and milk (alone or in combination with phosphocholine) was strongly associated with net free choline portal flux (coefficient of determination ranging from 0.64 to 0.79). In summary, free choline supply to the lactating dairy cow increases only specific choline metabolites in plasma and milk, which can be potential markers for choline bioavailability.


Asunto(s)
Colina/administración & dosificación , Lactancia , Animales , Disponibilidad Biológica , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Leche/química , Rumen/metabolismo
15.
Pharm Res ; 32(3): 1055-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25270571

RESUMEN

PURPOSE: The aim of this work was to develop a milk-based powder formulation appropriate for pediatric delivery of ritonavir (RIT). METHODS: Ultra-high pressure homogenization (UHPH) at 0.1, 300 and 500 MPa was used to process a dispersion of pasteurized skim milk (SM) and ritonavir. Loading efficiency was determined by RP-HPLC-UV; characterization of RIT:SM systems was carried out by apparent average hydrodynamic diameter and rheological measurements as well as different analytical techniques including Trp fluorescence, UV spectroscopy, DSC, FTIR and SEM; and delivery capacity of casein micelles was determined by in vitro experiments promoting ritonavir release. RESULTS: Ritonavir interacted efficiently with milk proteins, especially, casein micelles, regardless of the processing pressure; however, results suggest that, at 0.1 MPa, ritonavir interacts with caseins at the micellar surface, whilst, at 300 and 500 MPa, ritonavir is integrated to the protein matrix during UHPH treatment. Likewise, in vitro experiments showed that ritonavir release from micellar casein systems is pH dependent; with a high retention of ritonavir during simulated gastric digestion and a rapid delivery under conditions simulating the small intestine environment. CONCLUSIONS: Skim milk powder, especially, casein micelles are potentially suitable and efficient carrier systems to develop novel milk-based and low-ethanol powder formulations of ritonavir appropriate for pediatric applications.


Asunto(s)
Caseínas/química , Portadores de Fármacos , Inhibidores de la Proteasa del VIH/química , Ritonavir/química , Tecnología Farmacéutica/métodos , Animales , Rastreo Diferencial de Calorimetría , Caseínas/metabolismo , Bovinos , Química Farmacéutica , Inhibidores de la Proteasa del VIH/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Micelas , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Polvos , Presión , Unión Proteica , Reología , Ritonavir/metabolismo , Solubilidad , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
16.
J Dairy Sci ; 98(8): 5155-63, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26074238

RESUMEN

The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk.


Asunto(s)
Caseínas/metabolismo , Micelas , Proteínas de la Leche/análisis , Leche/química , Fosfolípidos/análisis , Animales , Caseínas/análisis , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Peso Molecular
17.
J Dairy Sci ; 98(11): 8128-32, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26364097

RESUMEN

Bioavailability of vitamin B12 is low in humans and animals. Improving vitamin B12 absorption is important for optimal performance in dairy cows and for increasing vitamin B12 concentrations in milk for human consumption. However, when supplemented in the diet, 80% of synthetic vitamin B12, cyanocobalamin (CN-CBL), is degraded in the rumen of dairy cows and only 25% of the amount escaping destruction in the rumen disappears from the small intestine between the duodenal and ileal cannulas. In pigs, vitamin B12 from milk is more efficiently absorbed than synthetic CN-CBL. The objective of this study was to determine the efficacy of casein hydrolysate and whey proteins as excipients for CN-CBL to increase portal-drained viscera (PDV) flux of the vitamin in lactating dairy cows. Four multiparous lactating Holstein cows (237 ± 17 DIM) equipped with a rumen cannula and catheters in the portal vein and a mesenteric artery were used in a randomized Youden square design. They were fed every 2 h to maintain steady digesta flow. On experimental days, they received a postruminal bolus of (1) CN-CBL alone (0.1 g), (2) CN-CBL (0.1 g) + casein hydrolysate (10 g), or (3) CN-CBL (0.1 g) + whey proteins (10 g). Starting 30 min after the bolus, blood samples were taken simultaneously from the 2 catheters every 15 min during the first 2 h and then every 2 h until 24 h postbolus. Milk yield, DMI, and vitamin B12 portal-arterial difference and PDV flux were analyzed using the MIXED procedure of SAS. Milk yield and DMI were not affected by treatments. The portal-arterial difference of vitamin B12 during the 24-h period following the bolus of vitamin was greater when the vitamin was given in solution with casein hydrolysate (2.9 ± 4.6 pg/mL) than alone (-17.5 ± 5.2 pg/mL) or with whey protein (-13.4 ± 4.2 pg/mL). The treatment effects were similar for the PDV flux. The present results suggest that CN-CBL given with casein hydrolysate increases vitamin B12 absorption as compared with CN-CBL given alone.


Asunto(s)
Caseínas/farmacología , Excipientes/farmacología , Absorción Intestinal/efectos de los fármacos , Vitamina B 12/farmacocinética , Proteína de Suero de Leche/farmacología , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Femenino , Lactancia , Leche/metabolismo , Rumen/efectos de los fármacos , Rumen/metabolismo
18.
Diabetes Obes Metab ; 16(12): 1214-22, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25060150

RESUMEN

AIMS: To examine the effect of two novel, enzymatically stable, glucagon receptor peptide antagonists, on metabolic control in two mouse models of obesity/diabetes. METHOD: The effects of twice daily i.p. administration of desHis(1)Pro(4)Glu(9)-glucagon or desHis(1)Pro(4)Glu(9)Lys(12)FA-glucagon for 10 days on metabolic control in high-fat-fed (HFF; 45% fat) and obese diabetic (ob/ob) mice were compared with saline-treated controls. RESULTS: Neither analogue altered body weight or food intake in either model over 10 days; however, treatment with each peptide restored non-fasting blood glucose towards normal control values in HFF mice. Basal glucose was also reduced (p < 0.01) in desHis(1)Pro(4)Glu(9)Lys(12)FA-glucagon treated ob/ob mice by day 10, coinciding with increases (p < 0.001) in circulating insulin. At the end of the treatment period, both analogues significantly (p < 0.05-0.01) improved oral and i.p. glucose tolerance (p < 0.05) and peripheral insulin sensitivity, increased pancreatic insulin and glucagon content (p < 0.05-0.01) and decreased (p < 0.05) cholesterol levels in HFF mice. Similarly beneficial metabolic effects on oral glucose tolerance (p < 0.01) and pancreatic insulin content (p < 0.05) were observed in ob/ob mice, especially after desHis(1)Pro(4)Glu(9)Lys(12)FA-glucagon treatment. No significant differences in circulating triglycerides or aspects of indirect calorimetry were noted between peptide treatment groups and respective control HFF and ob/ob mice. Finally, glucagon-mediated elevations of glucose and insulin were significantly (p < 0.05-0.01) annulled after 10 days of desHis(1)Pro(4)Glu(9)-glucagon or desHis(1)Pro(4)Glu(9)Lys(12)FA-glucagon treatment in both animal models. CONCLUSION: These data indicate that peptide-based glucagon receptor antagonists can reverse aspects of genetically and dietary-induced obesity-related diabetes.


Asunto(s)
Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Ingestión de Alimentos/efectos de los fármacos , Glucagón/análogos & derivados , Hipoglucemiantes/farmacología , Receptores de Glucagón/antagonistas & inhibidores , Animales , Diabetes Mellitus Experimental/etiología , Dieta Alta en Grasa , Esquema de Medicación , Glucagón/administración & dosificación , Glucagón/farmacología , Hipoglucemiantes/administración & dosificación , Ratones , Ratones Obesos
19.
Int J Obes (Lond) ; 37(8): 1058-63, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23164696

RESUMEN

OBJECTIVE: Compromise of gastric inhibitory polypeptide (GIP) receptor action and activation of cholecystokinin (CCK) receptors represent mechanistically different approaches to the possible treatment of obesity-related diabetes. In the present study, we have compared the individual and combined effects of (Pro(3))GIP[mPEG] and (pGlu-Gln)-CCK-8 as an enzymatically stable GIP receptor antagonist and CCK receptor agonist molecule, respectively. RESULTS: Twice-daily injections of (pGlu-Gln)-CCK-8 alone and in combination with (Pro(3))GIP[mPEG] in high-fat-fed mice for 34 days significantly decreased the energy intake throughout the entire study (P<0.05 to P<0.01). Body weights were significantly depressed (P<0.05 to P<0.01) in all treatment groups from day 18 onwards. Administration of (pGlu-Gln)-CCK-8, (Pro(3))GIP[mPEG] or a combination of both peptides significantly (P<0.01 to P<0.001) decreased the overall glycaemic excursion in response to both oral and intraperitoneal glucose challenge when compared with the controls. Furthermore, oral glucose tolerance returned to lean control levels in all treatment groups. The beneficial effects on glucose homeostasis were not associated with altered insulin levels in any of the treatment groups. In keeping with this, the estimated insulin sensitivity was restored to control levels by twice-daily treatment with (pGlu-Gln)-CCK-8, (Pro(3))GIP[mPEG] or a combination of both peptides. The blood lipid profile on day 34 was not significantly different between the high-fat controls and all treated mice. CONCLUSION: These studies highlight the potential of (pGlu-Gln)-CCK-8 and (Pro(3))GIP[mPEG] in the treatment of obesity-related diabetes, but there was no evidence of a synergistic effect of the combined treatment.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Receptores de Colecistoquinina/agonistas , Receptores de la Hormona Gastrointestinal/agonistas , Sincalida/análogos & derivados , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa , Quimioterapia Combinada , Ingestión de Energía/efectos de los fármacos , Resistencia a la Insulina , Masculino , Ratones , Obesidad/tratamiento farmacológico , Sincalida/administración & dosificación , Factores de Tiempo
20.
J Dairy Sci ; 96(2): 790-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23261375

RESUMEN

Recent studies have shown that reassembled micelles formed by caseinates and purified casein fractions (α(s)- and ß-casein) bind to hydrophobic compounds, including curcumin, docosahexaenoic acid, and vitamin D. However, limited research has been done on the binding of hydrophobic compounds by unmodified casein micelles in skim milk. In the present study, we investigated the ability of casein micelles in commercial skim milk to associate with vitamin A (retinyl palmitate), a fat-soluble vitamin commonly used to fortify milk. Milk protein fractions from different commercially available skim milk samples subjected to different processing treatments, including pasteurized, ultrapasteurized, organic pasteurized, and organic ultrapasteurized milks, were separated by fast protein liquid chromatography. The fractions within each peak were combined and freeze-dried. Sodium dodecyl sulfate-PAGE with silver staining was used to identify the proteins present in each of the fractions. The skim milk samples and fractions were extracted for retinyl palmitate and quantified against a standard using normal phase-HPLC. Retinyl palmitate was found to associate with the fraction of skim milk containing caseins, whereas the other proteins (BSA, ß-lactoglobulin, α-lactalbumin) did not show any binding. The retinyl palmitate content in the various samples ranged from 1.59 to 2.48 µg of retinyl palmitate per mL of milk. The casein fractions contained between 14 and 40% of total retinyl palmitate in the various milks tested. The variation in the retention of vitamin A by caseins was probably explained by differences in the processing of different milk samples, including thermal treatment, the form of vitamin A emulsion used for fortification, and the point of fortification during processing. Unmodified casein micelles have a strong intrinsic affinity toward the binding of vitamin A used to fortify commercially available skim milks.


Asunto(s)
Caseínas/metabolismo , Micelas , Leche/metabolismo , Vitamina A/metabolismo , Animales , Caseínas/análisis , Bovinos , Diterpenos , Electroforesis en Gel de Poliacrilamida , Liofilización , Lactalbúmina/análisis , Lactoglobulinas/análisis , Leche/química , Proteínas de la Leche/análisis , Ésteres de Retinilo , Vitamina A/análogos & derivados , Vitamina A/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA