Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 61(5): 443-451, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38458754

RESUMEN

BACKGROUND: Dystonia is one of the most common movement disorders. To date, the genetic causes of dystonia in populations of European descent have been extensively studied. However, other populations, particularly those from the Middle East, have not been adequately studied. The purpose of this study is to discover the genetic basis of dystonia in a clinically and genetically well-characterised dystonia cohort from Turkey, which harbours poorly studied populations. METHODS: Exome sequencing analysis was performed in 42 Turkish dystonia families. Using co-expression network (CEN) analysis, identified candidate genes were interrogated for the networks including known dystonia-associated genes and genes further associated with the protein-protein interaction, animal model-based characteristics and clinical findings. RESULTS: We identified potentially disease-causing variants in the established dystonia genes (PRKRA, SGCE, KMT2B, SLC2A1, GCH1, THAP1, HPCA, TSPOAP1, AOPEP; n=11 families (26%)), in the uncommon forms of dystonia-associated genes (PCCB, CACNA1A, ALDH5A1, PRKN; n=4 families (10%)) and in the candidate genes prioritised based on the pathogenicity of the variants and CEN-based analyses (n=11 families (21%)). The diagnostic yield was found to be 36%. Several pathways and gene ontologies implicated in immune system, transcription, metabolic pathways, endosomal-lysosomal and neurodevelopmental mechanisms were over-represented in our CEN analysis. CONCLUSIONS: Here, using a structured approach, we have characterised a clinically and genetically well-defined dystonia cohort from Turkey, where dystonia has not been widely studied, and provided an uncovered genetic basis, which will facilitate diagnostic dystonia research.


Asunto(s)
Distonía , Trastornos Distónicos , Animales , Humanos , Distonía/genética , Distonía/diagnóstico , Trastornos Distónicos/genética , Trastornos Distónicos/diagnóstico , Pruebas Genéticas , Turquía , Biología Molecular , Mutación , Proteínas de Unión al ADN/genética , Proteínas Reguladoras de la Apoptosis/genética
2.
BMC Neurol ; 22(1): 122, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346091

RESUMEN

BACKGROUND: Biallelic pathogenic variants in the SCARB2 gene have been associated with action myoclonus-renal failure (AMRF) syndrome. Even though SCARB2 associated phenotype has been reported to include typical neurological characteristics, depending on the localization and the feature of the pathogenic variants, clinical course and the presentations have been shown to differ. CASE PRESENTATION: Whole exome sequencing (WES) analysis revealed a homozygous truncating variant (p.N45MfsX88) in SCARB2 gene in the index case, and subsequent sanger sequencing analysis validated the variant in all affected family members from a Turkish family with the clinical characteristics associated with AMRF and related disorders. Intrafamilial clinical heterogeneity with common features including dysarthria, tremor and proteinuria, and distinct features such as peripheral neuropathy (PNP), myoclonus and seizures between the affected cases, was observed in the family. In-depth literature review enabled the detailed investigation of the reported variants associated with AMRF and suggested that while the type of the variant did not have a major impact on the course of the clinical characteristics, only the C terminal localization of the pathogenic variant significantly affected the clinical presentation, particularly the age at onset (AO) of the disease. CONCLUSIONS: In this study we showed that biallelic SCARB2 pathogenic variants might cause a spectrum of common and distinct features associated with AMRF. Of those features while the common features include myoclonus (100%), ataxia (96%), tonic clonic seizures (82%), dysarthria (68%), tremor (65%), and renal impairment (62%), the uncommon features involve PNP (17%), hearing loss (6.8%), and cognitive impairment (13.7%). AO has been found to be significantly higher in the carriers of the p.G462DfsX34 pathogenic variant. SCARB2 pathogenic variants have not been only implicated in AMRF but also in the pathogenesis of Parkinson's disease (PD) and Gaucher disease (GD), suggesting the importance of genetic and functional studies in the clinical and the diagnostic settings. Given the proven role of SCARB2 gene in the pathogenesis of AMRF, PD and GD with a wide spectrum of clinical symptoms, investigation of the possible modifiers, such as progranulin and HSP7, has a great importance.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Estudios de Asociación Genética , Humanos , Proteínas de Membrana de los Lisosomas/genética , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/patología , Fenotipo , Receptores Depuradores/genética
3.
Mov Disord ; 36(11): 2595-2604, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34180557

RESUMEN

BACKGROUND: Molecular pathways associated with α-synuclein proteostasis have been detected in genetic studies and in cell models and include autophagy, ubiquitin-proteasome system, mitochondrial homeostasis, and synaptic plasticity. However, we lack biomarkers that are representative for these pathways in human biofluids. OBJECTIVE: The objective of this study was to evaluate CSF protein profiles of pathways related to α-synuclein proteostasis. METHODS: We assessed CSF protein profiles associated with neurotransmitter secretion, synapse plasticity, and autophagy in 2 monocentric cohorts with α-synucleinopathy (385 PD patients and 67 DLB patients). We included 80 PD patients and 17 DLB patients with variants in the glucocerebrosidase gene to serve as proxy for accelerated α-synuclein pathology with pronounced clinical trajectories. RESULTS: (1) Proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy were lower in PD and DLB patients compared with healthy controls. (2) These patterns were more pronounced in DLB than in PD patients, accentuated by GBA variant status in both entities. (3) CSF levels of these proteins were positively associated with CSF levels of total α-synuclein, with lower levels of proteostasis proteins related to lower levels of total α-synuclein. (4) These findings could be confirmed longitudinally. PD patients with low CSF profiles of proteostasis proteins showed lower CSF levels of α-synuclein longitudinally compared with PD patients with a normal proteostasis profile. CONCLUSION: CSF proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy might serve as biomarkers related to α-synuclein proteostasis in PD and DLB. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Autofagia , Biomarcadores , Glucosilceramidasa , Humanos , Plasticidad Neuronal , Neurotransmisores , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
4.
Mov Disord ; 36(7): 1624-1633, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33617693

RESUMEN

BACKGROUND: The SNCA gene encoding α-synuclein (αSyn) is the first gene identified to cause autosomal-dominant Parkinson's disease (PD). OBJECTIVE: We report the identification of a novel heterozygous A30G mutation of the SNCA gene in familial PD and describe clinical features of affected patients, genetic findings, and functional consequences. METHODS: Whole exome sequencing was performed in the discovery family proband. Restriction digestion with Bbvl was used to screen SNCA A30G in two validation cohorts. The Greek cohort included 177 familial PD probands, 109 sporadic PD cases, and 377 neurologically healthy controls. The German cohort included 136 familial PD probands, 380 sporadic PD cases, and 116 neurologically healthy controls. We also conducted haplotype analysis using 13 common single nucleotide variants around A30G to determine the possibility of a founder effect for A30G. We then used biophysical methods to characterize A30G αSyn. RESULTS: We identified a novel SNCA A30G (GRCh37, Chr4:90756730, c.89 C>G) mutation that co-segregated with the disease in five affected individuals of three Greek families and was absent from controls. A founder effect was strongly suggested by haplotype analysis. The A30G mutation had a local effect on the intrinsically disordered structure of αSyn, slightly perturbed membrane binding, and promoted fibril formation. CONCLUSION: Based on the identification of A30G co-segregating with the disease in three families, the absence of the mutation in controls and population databases, and the observed functional effects, we propose SNCA A30G as a novel causative mutation for familial PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Efecto Fundador , Grecia , Humanos , Mutación/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
5.
Mov Disord ; 36(5): 1216-1228, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547828

RESUMEN

BACKGROUND: With pathway-specific trials in PD associated with variants in the glucocerebrosidase gene (PDGBA ) under way, we need markers that confirm the impact of genetic variants in patient-derived biofluids in order to allow patient stratification merely based on genetics and that might serve as biochemical read-out for target engagement. OBJECTIVE: To explore GBA-pathway-specific biomarker profiles cross-sectionally (TUEPAC-MIGAP, PPMI) and longitudinally (PPMI). METHODS: We measured enzyme activity of the lysosomal glucocerebrosidase, CSF levels of glucosylceramides (upstream substrate of glucocerebrosidase), CSF levels of ceramides (downstream product of glucocerebrosidase), lactosylceramides, sphingosines, sphingomyelin (by-products) and CSF levels of total α-synuclein in PDGBA patients compared to PDGBA_wildtype patients. RESULTS: Cross-sectionally in both cohorts and longitudinally in PPMI: (1) glucocerebrosidase activity was significantly lower in PDGBA compared to PDGBA_wildtype . (2) CSF levels of upstream substrates (glucosylceramides species) were higher in PDGBA compared to PDGBA_wildtype . (3) CSF levels of total α-synuclein were lower in PDGBA compared to PDGBA_wildtype . All of these findings were most pronounced in PDGBA with severe mutations (PDGBA_severe ). Cross-sectionally in TUEPAC-MIGAP and longitudinally in PPMI, CSF levels of downstream-products (ceramides) were higher in PDGBA_severe . Cross-sectionally in TUEPAC-MIGAP by-products sphinganine and sphingosine-1-phosphate and longitudinally in PPMI species of by-products lactosylceramides and sphingomyelin were higher in PDGBA_severe . INTERPRETATION: These findings confirm that GBA mutations have a relevant functional impact on biomarker profiles in patients. Bridging the gap between genetics and biochemical profiles now allows patient stratification for clinical trials merely based on mutation status. Importantly, all findings were most prominent in PDGBA with severe variants. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Glucosilceramidasa/genética , Humanos , Mutación/genética , Enfermedad de Parkinson/genética , Esfingolípidos , alfa-Sinucleína/genética
6.
Eur J Neurol ; 28(5): 1557-1565, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33449400

RESUMEN

BACKGROUND: Parkinson´s disease (PD) has a large phenotypic variability, which may, at least partly, be genetically driven including alterations of gene products. Candidates might not only be proteins associated with disease risk but also pathways that play a role in aging. OBJECTIVE: To evaluate phenotype-modifying effects of genetic variants in Klotho, a longevity gene. METHODS: We analyzed two longitudinal cohorts: one local cohort comprising 459 PD patients who underwent genotyping for the KL-VS haplotype in Klotho including a subgroup of 125 PD patients and 50 healthy controls who underwent biochemical cerebrospinal fluid (CSF) analyses of Klotho and fibroblast growth factor 23 as well as vitamin D metabolites. The second cohort comprised 297 patients from the Parkinson's Progression Markers Initiative (PPMI) for validation of genetic-clinical findings. RESULTS: PD patients carrying the KL-VS haplotype demonstrated a shorter interval between PD onset and onset of cognitive impairment (both cohorts) and higher Unified Parkinson´s Disease Rating Scale part III (UPDRS III) scores (PPMI). CSF protein levels of Klotho and fibroblast growth factor 23 were lower in PD patients irrespective of gender compared to controls. Moreover, low CSF levels of Klotho were associated with higher scores in the UPDRS III and Hoehn and Yahr Scale. CONCLUSIONS: Our results indicate that genetic variants in Klotho together with its corresponding CSF protein profiles are associated with aspects of disease severity in PD. These findings suggest that pathways associated with aging might be targets for future biomarker research in PD.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Proteínas del Líquido Cefalorraquídeo , Estudios de Cohortes , Humanos , Longevidad , Pruebas de Estado Mental y Demencia , Enfermedad de Parkinson/genética
7.
Mov Disord ; 35(3): 495-499, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31670439

RESUMEN

BACKGROUND: Mutations in the gene glucocerebrosidase (GBA1) are specifically associated with alpha-synucleinopathies, namely, Parkinson's disease (PD) and dementia with Lewy bodies. As disease-modifying treatment options such as alpha-synuclein lowering compounds are under way, patient stratification according to alpha-synuclein-specific enrichment strategies, possibly reflected by cerebrospinal fluid (CSF) profiles, is a much needed prerequisite. OBJECTIVE: Are GBA1 mutations associated with a CSF alpha-synuclein profile in PD? METHODS: Screening of the GBA1 gene and analysis of CSF levels of total alpha-synuclein were performed in 80 PDGBA , 80 PDGBA _wildtype and 39 healthy controls cross-sectionally. Subgroup analyses based on mutation severity was done for PDGBA . RESULTS: Patients carrying severe GBA1 mutations showed (1) an earlier age at onset, (2) more pronounced cognitive decline and higher prevalence of rapid eye movement sleep behavior disorder, and (3) reduced CSF levels of total alpha-synuclein. CONCLUSION: The effects of GBA1 mutations on CSF alpha-synuclein profiles and phenotypical characteristics seem dependent on GBA1 mutation severity. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Glucosilceramidasa/genética , Humanos , Cuerpos de Lewy , Mutación/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
8.
Mov Disord ; 34(7): 1069-1073, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31189032

RESUMEN

BACKGROUND: Patients with dementia with Lewy bodies reveal a variable pathology including alpha-synuclein, amyloid-beta, and Tau. Mutations in GBA1 are specifically associated with synucleinopathies. PD patients with GBA1 mutations show reduced CSF levels of total alpha-synuclein. OBJECTIVE: Whether GBA1 mutations are associated with a CSF alpha-synuclein profile in dementia with Lewy bodies. METHODS: Screening of the GBA1 gene and single-nucleotide polymorphisms in SNCA rs356220, APOE rs429358, and MAPT rs1052587 as well as CSF levels of total alpha-synuclein, amyloid-beta1-42 , total-Tau, phospho-Tau, and neurofilament light chain were assessed in 100 dementia with Lewy bodies and 39 controls cross-sectionally. RESULTS: Severity of GBA1 mutations was associated with a younger age at onset and higher prevalence of rapid eye movement sleep behavior disorder. CSF levels of total alpha-synuclein were lowest in DLBGBA_pathogenic compared to DLBGBA_mild and DLBGBA_wildtype . CONCLUSION: Similar to PD, pathogenic GBA1 mutations seem to be associated with CSF alpha-synuclein profiles in dementia with Lewy bodies. That might be useful for patient stratification for specific alpha-synuclein-lowering compounds. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa/genética , Enfermedad por Cuerpos de Lewy/genética , Mutación/genética , alfa-Sinucleína/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Femenino , Expresión Génica/genética , Humanos , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/diagnóstico , Masculino , Persona de Mediana Edad , alfa-Sinucleína/genética , Proteínas tau/líquido cefalorraquídeo
9.
Am J Hum Genet ; 96(6): 938-47, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25983243

RESUMEN

Myoclonus-dystonia (M-D) is a rare movement disorder characterized by a combination of non-epileptic myoclonic jerks and dystonia. SGCE mutations represent a major cause for familial M-D being responsible for 30%-50% of cases. After excluding SGCE mutations, we identified through a combination of linkage analysis and whole-exome sequencing KCTD17 c.434 G>A p.(Arg145His) as the only segregating variant in a dominant British pedigree with seven subjects affected by M-D. A subsequent screening in a cohort of M-D cases without mutations in SGCE revealed the same KCTD17 variant in a German family. The clinical presentation of the KCTD17-mutated cases was distinct from the phenotype usually observed in M-D due to SGCE mutations. All cases initially presented with mild myoclonus affecting the upper limbs. Dystonia showed a progressive course, with increasing severity of symptoms and spreading from the cranio-cervical region to other sites. KCTD17 is abundantly expressed in all brain regions with the highest expression in the putamen. Weighted gene co-expression network analysis, based on mRNA expression profile of brain samples from neuropathologically healthy individuals, showed that KCTD17 is part of a putamen gene network, which is significantly enriched for dystonia genes. Functional annotation of the network showed an over-representation of genes involved in post-synaptic dopaminergic transmission. Functional studies in mutation bearing fibroblasts demonstrated abnormalities in endoplasmic reticulum-dependent calcium signaling. In conclusion, we demonstrate that the KCTD17 c.434 G>A p.(Arg145His) mutation causes autosomal dominant M-D. Further functional studies are warranted to further characterize the nature of KCTD17 contribution to the molecular pathogenesis of M-D.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastornos Distónicos/genética , Trastornos Distónicos/patología , Mutación Missense/genética , Canales de Potasio/genética , Secuencia de Bases , Encéfalo/metabolismo , Mapeo Cromosómico , Trastornos Distónicos/metabolismo , Exoma/genética , Femenino , Redes Reguladoras de Genes/genética , Genes Dominantes/genética , Alemania , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Análisis de Secuencia de ADN , Transmisión Sináptica/genética , Reino Unido
10.
Mov Disord ; 33(8): 1354-1358, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30145809

RESUMEN

BACKGROUND: HPCA (hippocalcin) is one of the underlying genetic causes of autosomal-recessively inherited forms of dystonia. Here, we describe two consanguineous Turkish DYT-HPCA families carrying the novel HPCA mutations. METHODS: After detailed clinical and neurological examination, whole-exome sequencing was performed. RESULTS: Whole-exome sequencing analysis revealed two homozygous novel truncating mutations (p.W103* and p.P10PfsTer80) in the HPCA gene in two unrelated Turkish dystonia families presenting with complex dystonia. CONCLUSIONS: After identification of HPCA as a genetic cause of DYT-HPCA-like dystonia by Charlesworth et al, this is the second report in the scientific literature that describes dystonia families harboring HPCA mutations. Our findings confirm that HPCA leads to recessively inherited dystonia. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía/genética , Hipocalcina/genética , Mutación/genética , Consanguinidad , Análisis Mutacional de ADN , Distonía/diagnóstico , Salud de la Familia , Femenino , Humanos , Masculino , Fenotipo , Turquía , Adulto Joven
11.
Mov Disord ; 33(8): 1349-1353, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30132985

RESUMEN

OBJECTIVES: In order to evaluate the influence of the genetic load of 49 genetic variants known to be associated with PD on the age at onset as well as on clinical outcome parameters. BACKGROUND: PD patients show a large variability in phenotype and progression reflecting interindividual heterogeneity. This might be influenced by a diverse genetic architecture. METHODS: Six hundred seventeen PD patients were included in this study and stratified by their "genetic load," which is based on the weighted odds ratios of 49 genetic variants known to be associated with PD from genome-wide association studies. Clinical parameters (H & Y, UPDRS-III, MMSE, and Beck's Depression Inventory) were evaluated cross-sectionally and in a subgroup longitudinally over 8 years. RESULTS: PD patients with the highest genetic load were younger at disease onset, whereas severity of clinical parameters were similar compared to patients with the lowest genetic load. These findings could be confirmed regarding progression to clinical endpoints in the longitudinal analysis. CONCLUSION: A high genetic load is associated with a younger age at onset, which, in turn, might possibly promote more effective compensatory mechanisms resulting in a similar rate of disease progression. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Fenotipo
13.
Mov Disord ; 32(12): 1780-1783, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29094781

RESUMEN

BACKGROUND: A proportion of idiopathic Parkinson's disease patients (PDidiopathic ) with dementia show altered CSF profiles of amyloid ß (Aß) and Tau. PD patients with Glucocerebrosidase (GBA) mutations (PDGBA ) present with even more cognitive decline than seen in PDidiopathic . OBJECTIVE: The objective of this study was to evaluate whether CSF profiles of Aß and tau are associated with the prominent cognitive impairment in PDGBA . METHODS: CSF levels of Aß1-42 , t-Tau, p-Tau, and total alpha-synuclein were assessed in 479 participants (50 PDGBA , 308 PDidiopathic , 121 healthy controls). RESULTS: Older age was associated with cognitive impairment in PDGBA and PDidiopathic . Despite prominent cognitive impairment, PDGBA showed similar CSF levels of Aß1-42 , t-Tau, and p-Tau as seen in healthy controls. In contrast, lower levels of Aß1-42 and higher levels of t-Tau and p-Tau were associated with worse cognitive performance in PDidiopathic . CONCLUSIONS: The prominent cognitive impairment in PDGBA seems not primarily associated with Aß and Tau profiles in CSF. © 2017 International Parkinson and Movement Disorder Society.


Asunto(s)
Péptidos beta-Amiloides/líquido cefalorraquídeo , Trastornos del Conocimiento/etiología , Glucosilceramidasa/genética , Mutación/genética , Enfermedad de Parkinson , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Estadísticas no Paramétricas , Adulto Joven
14.
Mov Disord ; 30(3): 407-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25448271

RESUMEN

BACKGROUND: Parkinson's disease (PD) patients with GBA mutations show an earlier age at onset and more severe non-motor symptoms compared with PD patients without GBA mutations. OBJECTIVE: This study was undertaken to evaluate progression of motor and non-motor symptoms in sporadic PD patients depending on the mutational GBA status. METHODS: We used regression analysis to evaluate independent effects of the mutational GBA status, age at onset, age at examination, and disease duration on motor (Unified Parkinson's Disease Rating Scale [UPDRS]-III, Hoehn and Yahr [H&Y] stage, Levodopa [L-dopa]-equivalent-dosage) and non-motor characteristics (cognition and mood). Disease progression was assessed prospectively over 3 years. RESULTS: The GBA-associated PD patients compared with non-mutation PD patients, although younger and with an earlier age at onset, show (1) a more rapid disease progression of motor impairment and cognitive decline and (2) reduced survival rates. CONCLUSIONS: The mutational GBA status, rather than older age and age at onset, presents an important predictor for disease progression in this specific subgroup of PD patients.


Asunto(s)
Glucosilceramidasa/genética , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/mortalidad , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Regresión
15.
NPJ Parkinsons Dis ; 10(1): 24, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38242875

RESUMEN

Seed amplification assays have been implemented in Parkinson's disease to reveal disease-specific misfolded alpha-synuclein aggregates in biospecimens. While the assays' qualitative dichotomous seeding response is valuable to stratify and enrich cohorts for alpha-synuclein pathology in general, more quantitative parameters that are associated with clinical dynamics of disease progression and that might potentially serve as exploratory outcome measures in clinical trials targeting alpha-synuclein would add important information. To evaluate whether the seeding kinetic parameters time required to reach the seeding threshold (LAG phase), the peak of fluorescence response (Imax), and the area under the curve (AUC) are associated with clinical trajectories, we analyzed LAG, Imax, and AUC in relation to the development of cognitive decline in a longitudinal cohort of 199 people with Parkinson's disease with positive CSF alpha-synuclein seeding status. Patients were stratified into tertiles based on their individual CSF alpha-synuclein seeding kinetic properties. The effect of the kinetic parameters on longitudinal development of cognitive impairment defined by MoCA ≤25 was analyzed by Cox-Regression. Patients with a higher number of positive seeding replicates and tertile groups of shorter LAG, higher Imax, and higher AUC showed a higher prevalence of and a shorter duration until cognitive impairment longitudinally (3, 6, and 3 years earlier with p ≤ 0.001, respectively). Results remained similar in separate subgroup analyses of patients with and without GBA mutation. We conclude that a more prominent alpha-synuclein seeding kinetic profile translates into a more rapid development of cognitive decline.

16.
Mov Disord ; 28(9): 1217-21, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23674386

RESUMEN

Age at onset serves as a predictor of progression and mortality in sporadic Parkinson's disease (PD). Therefore, the identification of genetic modifiers for age at onset might lead to a better understanding of disease pathogenesis. We performed multivariate linear regression analysis in 1396 sporadic PD patients assessing 21 single-nucleotide polymorphisms (SNPs) that have been previously suggested to be associated with sporadic PD. Moreover, a cumulative risk score was assigned to each patient and correlated with age at onset. We identified the rs356219 risk allele in the SNCA gene as significantly contributing to earlier age at onset. Neither one of the other 21 SNPs tested in this analysis nor the cumulative number of risk alleles showed a significant impact on PD onset. Because sequence variants in the SNCA gene are not only associated with autosomal dominantly inherited PD and increased susceptibility for sporadic PD but also have been found to modify the phenotype such as age at onset in both sporadic and various monogenic forms of PD, this gene serves as an outstanding target for further research on PD pathogenesis, which in return might provide potential therapeutic options. © 2013 Movement Disorder Society.


Asunto(s)
Edad de Inicio , Mutación/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Polimorfismo de Nucleótido Simple/genética
17.
NPJ Parkinsons Dis ; 9(1): 156, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996455

RESUMEN

Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.

18.
Eur J Neurosci ; 35(6): 896-908, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22393899

RESUMEN

Pathological synchronization in large-scale motor networks constitutes a pathophysiological hallmark of Parkinson's disease (PD). Corticomuscular synchronization in PD is pronounced in lower frequency bands (< 10 Hz), whereas efficient cortical motor integration in healthy persons is driven in the beta frequency range. Electroencephalogram and electromyogram recordings at rest and during an isometric precision grip task were performed in four perioperative sessions in 10 patients with PD undergoing subthalamic nucleus deep-brain stimulation: (i) 1 day before (D0); (ii) 1 day after (D1); (iii) 8 days after implantation of macroelectrodes with stimulation off (D8StimOff); and (iv) on (D8StimOn). Analyses of coherence and phase delays were performed in order to challenge the effects of microlesion and stimulation on corticomuscular coherence (CMC). Additionally, local field potentials recorded from the subthalamic nucleus on D1 allowed comprehensive mapping of motor-related synchronization in subthalamocortical and cerebromuscular networks. Motor performance improved at D8StimOn compared with D0 and D8StimOff paralleled by a reduction of muscular activity and CMC in the theta band (3.9-7.8 Hz) and by an increase of CMC in the low-beta band (13.7-19.5 Hz). Efferent motor cortical drives to muscle presented mainly below 10 Hz on D8StimOff that were suppressed on D8StimOn and occurred on higher frequencies from 13 to 45 Hz. On D1, coherence of the high-beta band (20.5-30.2 Hz) increased during movement compared with rest in subthalamomuscular and corticomuscular projections, whereas it was attenuated in subcorticocortical projections. The present findings lend further support to the concept of pathological network synchronization in PD that is beneficially modulated by stimulation.


Asunto(s)
Sincronización Cortical/fisiología , Corteza Motora/fisiopatología , Enfermedad de Parkinson/fisiopatología , Desempeño Psicomotor/fisiología , Núcleo Subtalámico/fisiopatología , Anciano , Estimulación Encefálica Profunda , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/inervación , Enfermedad de Parkinson/terapia , Procesamiento de Señales Asistido por Computador
19.
Mov Disord ; 27(2): 288-92, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22021190

RESUMEN

BACKGROUND: Heterozygous mutations in the glucocerebrosidase gene lead to an increased risk for and to more severe alpha-synuclein-associated pathology in Parkinson's disease. As both glucocerebrosidase and alpha-synuclein interact with fatty acids, we hypothesized that cerebrospinal fluid fatty acid levels are altered in these Parkinson's disease patients. METHODS: Cerebrospinal fluid levels of 13 fatty acids in 8 Parkinson's disease patients with a heterozygous glucocerebrosidase mutation were compared with those of 41 idiopathic Parkinson's disease patients and 30 controls using gas chromatography. RESULTS: Parkinson's disease patients with a heterozygous glucocerebrosidase mutation had lower levels of palmitoleic (P ≤ .007), oleic (P ≤ .016), linoleic (P ≤ .005), arachidonic (P ≤ .003), eicosapentaenoic (P ≤ .003) and decosahexaenoic (P ≤ .03) acids and lower levels of total fatty acids (P < .005) compared with both idiopathic Parkinson's disease patients and control subjects. CONCLUSIONS: These results suggest that abnormalities of fatty acid metabolism are specifically involved in the pathogenesis of Parkinson's disease associated with a heterozygous glucocerebrosidase mutation.


Asunto(s)
Ácidos Grasos/líquido cefalorraquídeo , Glucosilceramidasa/genética , Mutación/genética , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/genética , Anciano , Anciano de 80 o más Años , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad
20.
NPJ Parkinsons Dis ; 8(1): 117, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109514

RESUMEN

Lewy-body pathology with aggregation of abnormal conformations of the protein alpha-synuclein (α-Syn) represent the histopathological hallmarks of Parkinson's disease (PD). Genetic prototypes such as PD due to mutations in the alpha-synuclein gene (SNCA) offer the opportunity to evaluate α-Syn-related profiles in patient-derived biomaterial. We identified a family with a SNCA triplication and assessed the index patient for CSF α-Syn seeding capacity and levels of total α-Syn along with other neurodegenerative CSF markers (Aß1-42, total-Tau, phospho-Tau, NFL). As no published CSF data in patients with SNCA triplication are available, we descriptively compared his CSF profiles to those of sporadic PD patients and PD patients with GBA mutations as these are also specifically associated with prominent α-Syn pathology. Additionally, skin biopsies with staining for phospho-α-Syn were done. To assess cerebral glucose metabolism and brain atrophy combined positron emission tomography and magnetic resonance imaging ([18F]FDG-PET/MRI) was performed. Age at onset was 24 years and motor impairment was accompanied by prominent non-motor symptoms with early development of dementia, depression, REM sleep behavior disorder, hyposmia, and dysautonomia. Correspondingly, PET-MRI showed hypometabolism and atrophy in frontal, temporoparietal and occipital regions. CSF levels of total α-Syn were threefold higher and RT-QuIC showed remarkable α-Syn seeding activity in all kinetic categories in the SNCATriplication patient compared to patients with GBA mutations. Our results are consistent with findings that not only mutant forms but also overexpression of the wild-type α-Syn protein lead to PD and PD dementia and show a striking CSF α-Syn seeding profile, thus substantiating the role of RT-QuIC as a specific in vivo biomarker of α-Syn brain pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA