Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Virol ; 98(3): e0015324, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421168

RESUMEN

Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE: Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.


Asunto(s)
Condensados Biomoleculares , Virus Sincitial Respiratorio Humano , Humanos , Animales , Bovinos , Línea Celular , Hibridación Fluorescente in Situ , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribosomas/metabolismo , Replicación Viral
2.
J Virol ; 96(6): e0202421, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138130

RESUMEN

To gain more information about the nature of Birnaviridae virus factories (VFs), we used a recombinant infectious bursal disease virus (IBDV) expressing split-GFP11 tagged to the polymerase (VP1) that we have previously shown is a marker for VFs in infected cells expressing GFP1-10. We found that VFs colocalized with 5-ethynyl uridine in the presence of actinomycin, demonstrating they contained newly synthesized viral RNA, and VFs were visible in infected cells that were fixed and permeabilized with digitonin, demonstrating that they were not membrane bound. Fluorescence recovery after photobleaching (FRAP) a region of interest within the VFs occurred rapidly, recovering from approximately 25% to 87% the original intensity over 146 s, and VFs were dissolved by 1,6-hexanediol treatment, demonstrating they showed properties consistent with liquid-liquid phase separation. There was a lower colocalization of the VF GFP signal with the capsid protein VP2 (Manders' coefficient [MC] 0.6), compared to VP3 (MC, 0.9), which prompted us to investigate the VF ultrastructure by transmission electron microscopy (TEM). In infected cells, paracrystalline arrays (PAs) of virions were observed in the cytoplasm, as well as discrete electron dense regions. Using correlative light and electron microscopy (CLEM), we observed that the electron dense regions correlated with the GFP signal of the VFs, which were distinct from the PAs. In summary, Birnaviridae VFs contain newly synthesized viral RNA, are not bound by a membrane, show properties consistent with liquid-liquid phase separation, and are distinct from the PAs observed by TEM. IMPORTANCE Members of the Birnaviridae infect birds, fish and insects, and are responsible for diseases of significant economic importance to the poultry industry and aquaculture. Despite their importance, how they replicate in cells remains poorly understood. Here, we show that the Birnaviridae virus factories are not membrane bound, demonstrate properties consistent with liquid-liquid phase separation, and are distinct from the paracrystalline arrays of virions observed by transmission electron microscopy, enhancing our fundamental knowledge of virus replication that could be used to develop strategies to control disease, or optimize their therapeutic application.


Asunto(s)
Infecciones por Birnaviridae , Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Compartimentos de Replicación Viral , Replicación Viral , Animales , Birnaviridae/fisiología , Línea Celular , Pollos/genética , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Microscopía Electrónica , ARN Viral/genética , Proteínas Estructurales Virales/metabolismo , Virión/metabolismo
3.
J Virol ; 95(9)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33568514

RESUMEN

Lumpy skin disease virus (LSDV) is a vector-transmitted poxvirus that causes disease in cattle. Vector species involved in LSDV transmission and their ability to acquire and transmit the virus are poorly characterized. Using a highly representative bovine experimental model of lumpy skin disease, we fed four model vector species (Aedes aegypti, Culex quinquefasciatus, Stomoxys calcitrans, and Culicoides nubeculosus) on LSDV-inoculated cattle in order to examine their acquisition and retention of LSDV. Subclinical disease was a more common outcome than clinical disease in the inoculated cattle. Importantly, the probability of vectors acquiring LSDV from a subclinical animal (0.006) was very low compared with that from a clinical animal (0.23), meaning an insect feeding on a subclinical animal was 97% less likely to acquire LSDV than one feeding on a clinical animal. All four potential vector species studied acquired LSDV from the host at a similar rate, but Aedes aegypti and Stomoxys calcitrans retained the virus for a longer time, up to 8 days. There was no evidence of virus replication in the vector, consistent with mechanical rather than biological transmission. The parameters obtained in this study were combined with data from studies of LSDV transmission and vector life history parameters to determine the basic reproduction number of LSDV in cattle mediated by each of the model species. This reproduction number was highest for Stomoxys calcitrans (19.1), followed by C. nubeculosus (7.1) and Ae. aegypti (2.4), indicating that these three species are potentially efficient transmitters of LSDV; this information can be used to inform LSD control programs.IMPORTANCE Lumpy skin disease virus (LSDV) causes a severe systemic disease characterized by cutaneous nodules in cattle. LSDV is a rapidly emerging pathogen, having spread since 2012 into Europe and Russia and across Asia. The vector-borne nature of LSDV transmission is believed to have promoted this rapid geographic spread of the virus; however, a lack of quantitative evidence about LSDV transmission has hampered effective control of the disease during the current epidemic. Our research shows subclinical cattle play little part in virus transmission relative to clinical cattle and reveals a low probability of virus acquisition by insects at the preclinical stage. We have also calculated the reproductive number of different insect species, therefore identifying efficient transmitters of LSDV. This information is of utmost importance, as it will help to define epidemiological control measures during LSDV epidemics and of particular consequence in resource-poor regions where LSD vaccination may be less than adequate.


Asunto(s)
Insectos Vectores , Dermatosis Nodular Contagiosa/transmisión , Virus de la Dermatosis Nodular Contagiosa/fisiología , Animales , Bovinos , Insectos Vectores/fisiología , Insectos Vectores/virología , Masculino , Replicación Viral
4.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32878896

RESUMEN

Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.


Asunto(s)
Inmunidad Innata/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Animales , Antivirales/farmacología , Bovinos , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Cuerpos de Inclusión Viral/metabolismo , FN-kappa B/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Factor de Necrosis Tumoral alfa , Células Vero , Replicación Viral
5.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321810

RESUMEN

The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 µm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 µm/s at 16 hpi compared to 0.22 µm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.


Asunto(s)
Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus Reordenados/genética , Replicación Viral/genética , Animales , Línea Celular , Coinfección/metabolismo , Citoplasma , Virus ARN/genética , Virus Reordenados/metabolismo , Proteínas Estructurales Virales/genética
6.
Nanotechnology ; 32(9): 095502, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33242844

RESUMEN

We have developed a low-cost molecularly imprinted polymer (MIP)-based fluorometric assay to directly quantify myoglobin in a biological sample. The assay uses a previously unreported method for the development of microwave-assisted rapid synthesis of aldehyde functionalized magnetic nanoparticles, in just 20 min. The aldehyde functionalized nanoparticles have an average size of 7.5 nm ± 1.8 and saturation magnetizations of 31.8 emu g-1 with near-closed magnetization loops, confirming their superparamagnetic properties. We have subsequently shown that protein tethering was possible to the aldehyde particles, with 0.25 ± 0.013 mg of myoglobin adsorbed to 20 mg of the nanomaterial. Myoglobin-specific fluorescently tagged MIP (F-MIP) particles were synthesized and used within the assay to capture myoglobin from a test sample. Excess F-MIP was removed from the sample using protein functionalized magnetic nanoparticles (Mb-SPION), with the remaining sample analyzed using fluorescence spectroscopy. The obtained calibration plot of myoglobin showed a linear correlation ranging from 60 pg ml-1 to 6 mg ml-1 with the limit of detection of 60 pg ml-1. This method was successfully used to detect myoglobin in spiked fetal calf serum, with a recovery rate of more than 93%.


Asunto(s)
Tecnología Química Verde/métodos , Polímeros Impresos Molecularmente/síntesis química , Mioglobina/análisis , Albúmina Sérica Bovina/química , Adsorción , Animales , Humanos , Nanopartículas de Magnetita , Microondas , Impresión Molecular , Polímeros Impresos Molecularmente/química , Mioglobina/química , Espectrometría de Fluorescencia
7.
Vet Pathol ; 57(3): 388-396, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32314676

RESUMEN

Lumpy skin disease is a high-consequence disease in cattle caused by infection with the poxvirus lumpy skin disease virus (LSDV). The virus is endemic in most countries in Africa and an emerging threat to cattle populations in Europe and Asia. As LSDV spreads into new regions, it is important that signs of disease are recognized promptly by animal caregivers. This study describes the gross, microscopic, and ultrastructural changes that occur over time in cattle experimentally challenged with LSDV. Four calves were inoculated with wildtype LSDV and monitored for 19 to 21 days. At 7 days after inoculation, 2 of the 4 cattle developed multifocal cutaneous nodules characteristic of LSD. Some lesions displayed a targetoid appearance. Histologically, intercellular and intracellular edema was present in the epidermis of some nodules. Occasional intracytoplasmic inclusion bodies were identified in keratinocytes. More severe and consistent changes were present in the dermis, with marked histiocytic inflammation and necrotizing fibrinoid vasculitis of dermal vessels, particularly the deep dermal plexus. Chronic lesions consisted of full-thickness necrosis of the dermis and epidermis. Lesions in other body organs were not a major feature of LSD in this study, highlighting the strong cutaneous tropism of this virus. Immunohistochemistry and electron microscopy identified LSDV-infected histiocytes and fibroblasts in the skin nodules of affected cattle. This study highlights the noteworthy lesions of LSDV and how they develop over time.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Animales , Asia/epidemiología , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Dermatitis/patología , Dermatitis/veterinaria , Dermatitis/virología , Enfermedades Endémicas/veterinaria , Europa (Continente)/epidemiología , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/patología , Dermatosis Nodular Contagiosa/transmisión , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Virus de la Dermatosis Nodular Contagiosa/ultraestructura , Piel/patología , Piel/virología , Vasculitis/patología , Vasculitis/veterinaria , Vasculitis/virología
8.
Traffic ; 13(1): 30-42, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21951707

RESUMEN

Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Retículo Endoplásmico/ultraestructura , Proteínas Virales/biosíntesis , Virus de la Fiebre Porcina Africana/ultraestructura , Animales , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Membranas Intracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Plásmidos , Estructura Terciaria de Proteína , Transfección , Células Vero , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructura , Proteínas Virales/química , Proteínas Virales/ultraestructura , Ensamble de Virus
9.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482358

RESUMEN

In the intricate environment of a cell, many studies seek to discover the location of specific events or objects of interest. Advances in microscopy in recent years have allowed for high detail views of specific areas of cells of interest using correlative light electron microscopy (CLEM). While this powerful technique allows for the correlation of a specific area of fluorescence on a confocal microscope with that same area in an electron microscope, it is most often used to study tagged proteins of interest. This method adapts the correlative method for use with antibody labelling. We have shown that some cellular structures are more sensitive than others to this process and that this can be a useful technique for laboratories where tagged proteins or viruses, or dedicated CLEM instruments are not available.

10.
J Gen Virol ; 94(Pt 12): 2636-2646, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23963534

RESUMEN

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER-Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Virus de la Fiebre Aftosa/patogenicidad , Interacciones Huésped-Patógeno , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Virus de la Fiebre Aftosa/fisiología , Células HeLa , Humanos , Transporte de Proteínas , Vías Secretoras , Porcinos , Replicación Viral
11.
J Virol ; 86(23): 12940-53, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22993157

RESUMEN

Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.


Asunto(s)
Autofagia/fisiología , Virus de la Fiebre Aftosa/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/virología , Internalización del Virus , Androstadienos , Animales , Proteína 5 Relacionada con la Autofagia , Western Blotting , Células CHO , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Cricetinae , Cricetulus , Proteínas Fluorescentes Verdes , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/deficiencia , Wortmanina
12.
Methods Mol Biol ; 2503: 51-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35575885

RESUMEN

The confocal laser scanning microscope allows us to examine tissue sections in greater detail than a widefield fluorescence microscope. However, this requires samples to be better preserved than standard cryostat sections, which are not usually aldehyde-fixed. Thick sections (approximately 70 µm) of formaldehyde-fixed tissue can be cut using a vibrating microtome and subsequently labeled with primary and secondary fluorescent antibodies and/or fluorescent stains. When imaged in the confocal microscope, these samples allow us to collect high-resolution images, detailing the intracellular location of multiple proteins and structures. In this chapter, we describe the technique used to prepare vibrating microtome sections, using porcine tissue infected with African swine fever virus as an example. This technique can easily be applied to any animal tissue with any suitable combination of antibodies, depending on the hypothesis.


Asunto(s)
Virus de la Fiebre Porcina Africana , Animales , Técnica del Anticuerpo Fluorescente , Formaldehído , Microscopía Confocal/métodos , Microtomía , Porcinos
13.
J Virol ; 84(18): 9149-60, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20592089

RESUMEN

Three-dimensional (3D) porcine nasal mucosal and tracheal mucosal epithelial cell cultures were developed to analyze foot-and-mouth disease virus (FMDV) interactions with mucosal epithelial cells. The cells in these cultures differentiated and polarized until they closely resemble the epithelial layers seen in vivo. FMDV infected these cultures predominantly from the apical side, primarily by binding to integrin alphav beta6, in an Arg-Gly-Asp (RGD)-dependent manner. However, FMDV replicated only transiently without any visible cytopathic effect (CPE), and infectious progeny virus could be recovered only from the apical side. The infection induced the production of beta interferon (IFN-beta) and the IFN-inducible gene Mx1 mRNA, which coincided with the disappearance of viral RNA and progeny virus. The induction of IFN-beta mRNA correlated with the antiviral activity of the supernatants from both the apical and basolateral compartments. IFN-alpha mRNA was constitutively expressed in nasal mucosal epithelial cells in vitro and in vivo. In addition, FMDV infection induced interleukin 8 (IL-8) protein, granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES mRNA in the infected epithelial cells, suggesting that it plays an important role in modulating the immune response.


Asunto(s)
Células Epiteliales/virología , Virus de la Fiebre Aftosa/fisiología , Replicación Viral , Animales , Antígenos de Neoplasias/metabolismo , Quimiocina CCL5/biosíntesis , Efecto Citopatogénico Viral , Femenino , Virus de la Fiebre Aftosa/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Integrinas/metabolismo , Interferón-alfa/biosíntesis , Interferón beta/biosíntesis , Interleucina-8/biosíntesis , Masculino , Técnicas de Cultivo de Órganos , ARN Mensajero/biosíntesis , Mucosa Respiratoria/virología , Porcinos , Activación Transcripcional , Acoplamiento Viral
14.
Viruses ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429879

RESUMEN

African swine fever virus (ASFV) is a highly contagious pathogen which causes a lethal haemorrhagic fever in domestic pigs and wild boar. The large, double-stranded DNA virus replicates in perinuclear cytoplasmic replication sites known as viral factories. These factories are complex, multi-dimensional structures. Here we investigated the protein and membrane compartments of the factory using super-resolution and electron tomography. Click IT chemistry in combination with stimulated emission depletion (STED) microscopy revealed a reticular network of newly synthesized viral proteins, including the structural proteins p54 and p34, previously seen as a pleomorphic ribbon by confocal microscopy. Electron microscopy and tomography confirmed that this network is an accumulation of membrane assembly intermediates which take several forms. At early time points in the factory formation, these intermediates present as small, individual membrane fragments which appear to grow and link together, in a continuous progression towards new, icosahedral virions. It remains unknown how these membranes form and how they traffic to the factory during virus morphogenesis.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/virología , Replicación Viral , Virus de la Fiebre Porcina Africana/ultraestructura , Animales , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Porcinos , Células Vero , Ensamble de Virus
15.
Viruses ; 13(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960809

RESUMEN

Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.


Asunto(s)
Coronavirus/metabolismo , Membranas Intracelulares/metabolismo , ARN Viral/biosíntesis , Animales , Línea Celular , Coronavirus/clasificación , Coronavirus/crecimiento & desarrollo , Citoplasma/metabolismo , Humanos , Virus de la Bronquitis Infecciosa/crecimiento & desarrollo , Virus de la Bronquitis Infecciosa/metabolismo , ARN Bicatenario/metabolismo , Compartimentos de Replicación Viral/metabolismo
16.
Life (Basel) ; 11(4)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920339

RESUMEN

The picornavirus foot-and-mouth disease virus (FMDV) is the causative agent of the economically important disease of livestock, foot-and-mouth disease (FMD). VP4 is a highly conserved capsid protein, which is important during virus entry. Previous published work has shown that antibodies targeting the N-terminus of VP4 of the picornavirus human rhinovirus are broadly neutralising. In addition, previous studies showed that immunisation with the N-terminal 20 amino acids of enterovirus A71 VP4 displayed on the hepatitis B core (HBc) virus-like particles (VLP) can induce cross-genotype neutralisation. To investigate if a similar neutralising response against FMDV VP4 could be generated, HBc VLPs displaying the N-terminus of FMDV VP4 were designed. The N-terminal 15 amino acids of FMDV VP4 was inserted into the major immunodominant region. HBc VLPs were also decorated with peptides of the N-terminus of FMDV VP4 attached using a HBc-spike binding tag. Both types of VLPs were used to immunise mice and the resulting serum was investigated for VP4-specific antibodies. The VLP with VP4 inserted into the spike, induced VP4-specific antibodies, however the VLPs with peptides attached to the spikes did not. The VP4-specific antibodies could recognise native FMDV, but virus neutralisation was not demonstrated. This work shows that the HBc VLP presents a useful tool for the presentation of FMDV capsid epitopes.

17.
Methods Mol Biol ; 2203: 263-275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32833218

RESUMEN

Transmission electron microscopy (TEM) is an invaluable technique used for imaging the ultrastructure of samples, and it is particularly useful when determining virus-host interactions at a cellular level. The environment inside a TEM is not favorable for biological material (high vacuum and high energy electrons). Also biological samples have little or no intrinsic electron contrast and rarely do they naturally exist in very thin sheets, as is required for optimum resolution in the TEM. To prepare these samples for imaging in the TEM therefore requires extensive processing which can alter the ultrastructure of the material. Here we describe a method which aims to minimize preparation artifacts by freezing the samples at high pressure to instantaneously preserve ultrastructural detail, then rapidly substituting the ice with resin to provide a firm matrix which can be cut into thin sections for imaging. Thicker sections of this material can also be imaged and reconstructed into 3D volumes using electron tomography.


Asunto(s)
Criopreservación/métodos , Substitución por Congelación/métodos , Microscopía Electrónica de Transmisión/métodos , Animales , Artefactos , Línea Celular , Células Cultivadas , Congelación , Técnicas Histológicas , Humanos , Imagenología Tridimensional/métodos , Microtomía/métodos
18.
PLoS Negl Trop Dis ; 14(12): e0008876, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270627

RESUMEN

Aedes aegypti Act4 is a paralog of the Drosophila melanogaster indirect flight muscle actin gene Act88F. Act88F has been shown to be haploinsufficient for flight in both males and females (amorphic mutants are dominant). Whereas Act88F is expressed in indirect flight muscles of both males and females, expression of Act4 is substantially female-specific. We therefore used CRISPR/Cas9 and homology directed repair to examine the phenotype of Act4 mutants in two Culicine mosquitoes, Aedes aegypti and Culex quinquefasciatus. A screen for dominant female-flightless mutants in Cx. quinquefasciatus identified one such mutant associated with a six base pair deletion in the CxAct4 coding region. A similar screen in Ae. aegypti identified no dominant mutants. Disruption of the AeAct4 gene by homology-dependent insertion of a fluorescent protein marker cassette gave a recessive female-flightless phenotype in Ae. aegypti. Reproducing the six-base deletion from Cx. quinquefasciatus in Ae. aegypti using oligo-directed mutagenesis generated dominant female-flightless mutants and identified additional dominant female-flightless mutants with other in-frame insertions or deletions. Our data indicate that loss of function mutations in the AeAct4 gene are recessive but that short in-frame deletions produce dominant-negative versions of the AeAct4 protein that interfere with flight muscle function. This makes Act4 an interesting candidate for genetic control methods, particularly population-suppression gene drives targeting female viability/fertility.


Asunto(s)
Aedes/genética , Culex/genética , Culex/fisiología , Vuelo Animal , Proteínas de Insectos/metabolismo , Control de Mosquitos , Animales , Sistemas CRISPR-Cas , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Masculino , Mutación
19.
J Virol ; 82(16): 7905-12, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18550658

RESUMEN

African swine fever virus (ASFV) is a member of a family of large nucleocytoplasmic DNA viruses that include poxviruses, iridoviruses, and phycodnaviruses. Previous ultrastructural studies of ASFV using chemical fixation and cryosectioning for electron microscopy (EM) have produced uncertainty over whether the inner viral envelope is composed of a single or double lipid bilayer. In this study we prepared ASFV-infected cells for EM using chemical fixation, cryosectioning, and high-pressure freezing. The appearance of the intracellular viral envelope was determined and compared to that of mitochondrial membranes in each sample. The best resolution of membrane structure was obtained with samples prepared by high-pressure freezing, and images suggested that the envelope of ASFV consisted of a single lipid membrane. It was less easy to interpret virus structure in chemically fixed or cryosectioned material, and in the latter case the virus envelope could be interpreted as having two membranes. Comparison of membrane widths in all three preparations indicated that the intracellular viral envelope of ASFV was not significantly different from the outer mitochondrial membrane (P < 0.05). The results support the hypothesis that the intracellular ASFV viral envelope is composed of a single lipid bilayer.


Asunto(s)
Virus de la Fiebre Porcina Africana/metabolismo , Membrana Celular/virología , Productos del Gen env/química , Membrana Dobles de Lípidos/química , Mitocondrias/virología , Animales , Membrana Celular/metabolismo , Chlorocebus aethiops , Congelación , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Péptidos/química , Presión , Células Vero , Proteínas Estructurales Virales , Ensamble de Virus
20.
Viruses ; 11(11)2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694296

RESUMEN

Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea. The virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to address questions regarding virus-host cell interactions for this genera of coronavirus. Here, we presented a detailed study of PDCoV-induced replication organelles. All positive-strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta-, and Gammacoronavirus genera have been characterized. All coronavirus genera induced the formation of double-membrane vesicles (DMVs). In addition, Alpha- and Betacoronaviruses induce the formation of convoluted membranes, while Gammacoronaviruses induce the formation of zippered endoplasmic reticulum (ER) with tethered double-membrane spherules. However, the structures induced by Deltacoronaviruses, particularly the presence of convoluted membranes or double-membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis, and progeny particle release determined. Subsequently, virus-induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double-membrane vesicles. Significantly, however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum, small associated tethered vesicles, and double-membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus.


Asunto(s)
Coronavirus , Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/ultraestructura , Orgánulos/ultraestructura , Replicación Viral , Animales , Línea Celular , Coronavirus/fisiología , Coronavirus/ultraestructura , Infecciones por Coronavirus/virología , Retículo Endoplásmico/virología , Interacciones Huésped-Patógeno , Membranas Intracelulares/virología , Cinética , Orgánulos/virología , ARN Viral/biosíntesis , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA