Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38592738

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adenosina Difosfato , Adenosina Monofosfato , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Humanos , Regulación Alostérica , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/química , Ligandos , Fosforilación , Adenosina Trifosfato/metabolismo , Activación Enzimática , Unión Proteica
2.
Nat Rev Mol Cell Biol ; 13(4): 251-62, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22436748

RESUMEN

AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético/fisiología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apetito/fisiología , Ritmo Circadiano/fisiología , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Hipotálamo/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Xenobióticos/farmacología
3.
Biochem J ; 480(23): 1951-1968, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37962491

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Dominio Catalítico , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493662

RESUMEN

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Mitocondrias/patología , Mitofagia , Condicionamiento Físico Animal , Proteínas Quinasas Activadas por AMP/genética , Animales , Humanos , Masculino , Ratones , Mitocondrias/metabolismo
5.
Nature ; 548(7665): 112-116, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28723898

RESUMEN

The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos/metabolismo , Glucosa/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteína Axina/metabolismo , Sitios de Unión , Activación Enzimática , Fibroblastos , Fructosa-Bifosfato Aldolasa/genética , Glucosa/deficiencia , Humanos , Masculino , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203624

RESUMEN

AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.


Asunto(s)
Benzamidas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Pirimidinas , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Activadas por AMP
7.
Biochem J ; 459(2): 275-87, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24467442

RESUMEN

The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser487 in the 'ST loop' (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr172. Surprisingly, the equivalent site on AMPK-α2, Ser491, is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr172 phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca2+ ionophore A23187, effects we show to be dependent on Akt activation and Ser487 phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr172 phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)-AMPK pathway, which would otherwise inhibit cell growth and proliferation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Abajo/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Modelos Moleculares , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/genética
8.
Cell Metab ; 5(2): 151-6, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276357

RESUMEN

Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.


Asunto(s)
Envejecimiento , Mitocondrias/enzimología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Guanidinas/administración & dosificación , Guanidinas/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Condicionamiento Físico Animal , Propionatos/administración & dosificación , Propionatos/farmacología , Ratas , Ratas Endogámicas F344 , Ribonucleótidos/farmacología
9.
J Exp Med ; 203(7): 1665-70, 2006 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-16818670

RESUMEN

The adenosine monophosphate (AMP)-activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKalpha1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca(2+) with Ca(2+) ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca(2+) stimulation of AMPK required the activity of Ca(2+)-calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca(2+) signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it.


Asunto(s)
Calcio/fisiología , Metabolismo Energético , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos T/fisiología , Linfocitos T/enzimología , Proteínas Quinasas Activadas por AMP , Animales , Bencimidazoles/farmacología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Isoquinolinas/farmacología , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/antagonistas & inhibidores , Naftalimidas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Linfocitos T/metabolismo
10.
Cell Rep ; 39(5): 110761, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508122

RESUMEN

AMP-activated protein kinase (AMPK) coordinates energy homeostasis during metabolic and energy stress. We report that the catalytic subunit isoform AMPK-α1 (but not α2) is cleaved by caspase-3 at an early stage during induction of apoptosis. AMPK-α1 cleavage occurs following Asp529, generating an ∼58-kDa N-terminal fragment (cl-AMPK-α1) and leading to the precise excision of the nuclear export sequence (NES) from the C-terminal end. This cleavage does not affect (1) the stability of pre-formed heterotrimeric complexes, (2) the ability of cl-AMPK-α1 to become phosphorylated and activated by the upstream kinases LKB1 or CaMKK2, or (3) allosteric activation by AMP or A-769662. Importantly, cl-AMPK-α1 is only detectable in the nucleus, consistent with removal of the NES, and ectopic expression of cleavage-resistant D529A-mutant AMPK-α1 promotes cell death induced by cytotoxic agents. Thus, we have elucidated a non-canonical mechanism of AMPK activation within the nucleus, which protects cells against death induced by DNA damage.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Caspasas , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Caspasas/metabolismo , Núcleo Celular/metabolismo , Daño del ADN , Fosforilación
11.
Biochem J ; 426(1): 109-18, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19958286

RESUMEN

Activation of AMPK (AMP-activated protein kinase) by phosphorylation at Thr172 is catalysed by at least two distinct upstream kinases, i.e. the tumour suppressor LKB1, and CaMKKbeta (Ca2+/calmodulin-dependent protein kinase kinase-beta). The sequence around Thr172 is highly conserved between the two catalytic subunit isoforms of AMPK and the 12 AMPK-related kinases, and LKB1 has been shown to act upstream of all of them. In the present paper we report that none of the AMPK-related kinases tested could be phosphorylated or activated in intact cells or cell-free assays by CaMKKbeta, although we did observe a slow phosphorylation and activation of BRSK1 (brain-specific kinase 1) by CaMKKalpha. Despite recent reports, we could not find any evidence that the alpha and/or beta subunits of AMPK formed a stable complex with CaMKKbeta. We also showed that increasing AMP concentrations in HeLa cells (which lack LKB1) had no effect on basal AMPK phosphorylation, but enhanced the ability of agents that increase intracellular Ca2+ to activate AMPK. This is consistent with the effect of AMP on phosphorylation of Thr172 being due to inhibition of dephosphorylation, and confirms that the effect of AMP is independent of the upstream kinase utilized.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Calcio/fisiología , AMP Cíclico/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Calcimicina/farmacología , Calcio/metabolismo , Línea Celular , Células HeLa , Humanos , Inmunoprecipitación , Ionóforos/farmacología , Datos de Secuencia Molecular , Fenformina/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica , Homología de Secuencia de Aminoácido
12.
Cell Metab ; 2(1): 9-19, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16054095

RESUMEN

The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bencimidazoles/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcimicina/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Activación Enzimática/efectos de los fármacos , Fibroblastos , Células HeLa , Humanos , Técnicas In Vitro , Isoquinolinas/farmacología , Ratones , Complejos Multienzimáticos/antagonistas & inhibidores , Naftalimidas , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Especificidad por Sustrato
13.
Cell Chem Biol ; 27(2): 214-222.e4, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31991096

RESUMEN

Cordycepin (3'-deoxyadenosine) is a major bioactive agent in Cordyceps militaris, a fungus used in traditional Chinese medicine. It has been proposed to have many beneficial metabolic effects by activating AMP-activated protein kinase (AMPK), but the mechanism of activation remained uncertain. We report that cordycepin enters cells via adenosine transporters and is converted by cellular metabolism into mono-, di-, and triphosphates, which at high cordycepin concentrations can almost replace cellular adenine nucleotides. AMPK activation by cordycepin in intact cells correlates with the content of cordycepin monophosphate and not other cordycepin or adenine nucleotides. Genetic knockout of AMPK sensitizes cells to the cytotoxic effects of cordycepin. In cell-free assays, cordycepin monophosphate mimics all three effects of AMP on AMPK, while activation in cells is blocked by a γ-subunit mutation that prevents activation by AMP. Thus, cordycepin is a pro-drug that activates AMPK by being converted by cellular metabolism into the AMP analog cordycepin monophosphate.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Desoxiadenosinas/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Nucleótidos de Desoxiadenina/metabolismo , Desoxiadenosinas/química , Desoxiadenosinas/farmacología , Células Hep G2 , Humanos , Fosforilación/efectos de los fármacos
14.
Biochem J ; 416(1): 1-14, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18774945

RESUMEN

LKB1 was discovered as a tumour suppressor mutated in Peutz-Jeghers syndrome, and is a gene involved in cell polarity as well as an upstream protein kinase for members of the AMP-activated protein kinase family. We report that mammals express two splice variants caused by alternate usage of 3'-exons. LKB1(L) is the previously described form, while LKB1(S) is a novel form in which the last 63 residues are replaced by a unique 39-residue sequence lacking known phosphorylation (Ser(431)) and farnesylation (Cys(433)) sites. Both isoforms are widely expressed in rodent and human tissues, although LKB1(S) is particularly abundant in haploid spermatids in the testis. Male mice in which expression of Lkb1(S) is knocked out are sterile, with the number of mature spermatozoa in the epididymis being dramatically reduced, and those spermatozoa that are produced have heads with an abnormal morphology and are non-motile. These results identify a previously undetected variant of LKB1, and suggest that it has a crucial role in spermiogenesis and male fertility.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Espermatogénesis/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Secuencia de Aminoácidos , Animales , Western Blotting , Activación Enzimática , Células HeLa , Humanos , Infertilidad Masculina/genética , Isoenzimas/genética , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Alineación de Secuencia , Espermátides/enzimología , Testículo/ultraestructura
15.
Cell Res ; 29(6): 460-473, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948787

RESUMEN

AMPK, a master regulator of metabolic homeostasis, is activated by both AMP-dependent and AMP-independent mechanisms. The conditions under which these different mechanisms operate, and their biological implications are unclear. Here, we show that, depending on the degree of elevation of cellular AMP, distinct compartmentalized pools of AMPK are activated, phosphorylating different sets of targets. Low glucose activates AMPK exclusively through the AMP-independent, AXIN-based pathway in lysosomes to phosphorylate targets such as ACC1 and SREBP1c, exerting early anti-anabolic and pro-catabolic roles. Moderate increases in AMP expand this to activate cytosolic AMPK also in an AXIN-dependent manner. In contrast, high concentrations of AMP, arising from severe nutrient stress, activate all pools of AMPK independently of AXIN. Surprisingly, mitochondrion-localized AMPK is activated to phosphorylate ACC2 and mitochondrial fission factor (MFF) only during severe nutrient stress. Our findings reveal a spatiotemporal basis for hierarchical activation of different pools of AMPK during differing degrees of stress severity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Nutrientes/metabolismo , Proteínas Quinasas Activadas por AMP/biosíntesis , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Fosforilación
16.
Methods Mol Biol ; 1732: 69-86, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480469

RESUMEN

AMP-activated protein kinase (AMPK) is an energy sensor that is activated by increases in the cellular AMP/ATP and ADP/ATP ratios by three mechanisms: (1) allosteric activation, (2) promotion of phosphorylation at Thr172 on the α subunit by upstream kinases, and (3) inhibition of dephosphorylation of Thr172 by protein phosphatases. All of these effects are triggered by the binding of AMP or ADP at one or more of three sites on the γ subunit, where they displace ATP. AMPK is also activated by ligands that bind in the ADaM site, which is located between the α and ß subunits. In this chapter we describe cell-free assays that can be used to study these varied activation mechanisms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Pruebas de Enzimas/métodos , Proteínas Quinasas Activadas por AMP/química , Adenosina Difosfato/química , Adenosina Monofosfato/química , Adenosina Trifosfato/química , Regulación Alostérica , Sitios de Unión , Sistema Libre de Células/metabolismo , Activación Enzimática , Marcaje Isotópico/métodos , Ligandos , Radioisótopos de Fósforo/química , Fosforilación , Unión Proteica , Subunidades de Proteína/química
17.
Methods Mol Biol ; 1732: 239-253, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480480

RESUMEN

AMP-activated protein kinase (AMPK) is extremely sensitive to cellular stress, so that nonphysiological activation of the kinase can readily occur during harvesting of cells or tissues. In this chapter we describe methods to harvest cells and tissues, and for kinase assays, that preserve the physiological activation status of AMPK as far as possible. Note that similar care with methods of cell or tissue harvesting is required when AMPK function is monitored by Western blotting, rather than by kinase assays. We also describe methods to determine whether compounds that activate AMPK in intact cells do so indirectly by interfering with cellular ATP synthesis or directly by binding to AMPK and, if the latter, whether this occurs by binding at the AMP-binding sites on the γ subunit or at the ADaM site located between the α and ß subunits.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Técnicas de Cultivo de Célula/métodos , Activadores de Enzimas/farmacología , Pruebas de Enzimas/métodos , Subunidades de Proteína/metabolismo , Proteínas ADAM/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Nucleótidos de Adenina/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Técnicas de Cultivo de Célula/instrumentación , Línea Celular , Activación Enzimática/efectos de los fármacos , Pruebas de Enzimas/instrumentación , Humanos , Ratones , Mutación , Fosforilación/efectos de los fármacos , Subunidades de Proteína/genética , Linfocitos T Citotóxicos
18.
Curr Biol ; 13(10): 861-6, 2003 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-12747836

RESUMEN

The AMP-activated protein kinase (AMPK) is an alphabetagamma heterotrimer that is activated by low cellular energy status and affects a switch away from energy-requiring processes and toward catabolism. While it is primarily regulated by AMP and ATP, high muscle glycogen has also been shown to repress its activation. Mutations in the gamma2 and gamma3 subunit isoforms lead to arrhythmias associated with abnormal glycogen storage in human heart and elevated glycogen in pig muscle, respectively. A putative glycogen binding domain (GBD) has now been identified in the beta subunits. Coexpression of truncated beta subunits lacking the GBD with alpha and gamma subunits yielded complexes that were active and normally regulated. However, coexpression of alpha and gamma with full-length beta caused accumulation of AMPK in large cytoplasmic inclusions that could be counterstained with anti-glycogen or anti-glycogen synthase antibodies. These inclusions were not affected by mutations that increased or abolished the kinase activity and were not observed by using truncated beta subunits lacking the GBD. Our results suggest that the GBD binds glycogen and can lead to abnormal glycogen-containing inclusions when the kinase is overexpressed. These may be related to the abnormal glycogen storage bodies seen in heart disease patients with gamma2 mutations.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Glucógeno/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Arritmias Cardíacas/enzimología , Línea Celular Tumoral , Glucógeno Sintasa/química , Glucógeno Sintasa/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/ultraestructura , Pruebas de Precipitina , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/ultraestructura , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia
19.
Curr Biol ; 13(15): 1299-305, 2003 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12906789

RESUMEN

BACKGROUND: The yeast SNF1 protein kinase and the mammalian AMP-activated protein kinase are highly conserved heterotrimeric complexes that are "metabolic master switches" involved in the switch from fermentative/anaerobic to oxidative metabolism. They are activated by cellular stresses that deplete cellular ATP, and SNF1 is essential in the response to glucose starvation. In both cases, activation requires phosphorylation at a conserved threonine residue within the activation loop of the kinase domain, but identifying the upstream kinase(s) responsible for this has been a challenging, unsolved problem. RESULTS: Using a library of strains that express 119 yeast protein kinases as GST fusions, we identified Elm1p as the sole kinase that could activate the kinase domain of AMP-activated protein kinase in vitro. Elm1p also activated the purified SNF1 complex, and this correlated with phosphorylation of Thr210 in the activation loop. Removal of the C-terminal domain increased the Elm1p kinase activity, indicating that it is auto-inhibitory. Expression of activated, truncated Elm1p from its own promoter gave a constitutive pseudohyphal growth phenotype that was rescued by deletion of SNF1, showing that Snf1p was acting downstream of Elm1p. Deletion of ELM1 does not give an snf- phenotype. However, Elm1p is closely related to Pak1p and Tos3p, and a pak1Delta tos3Delta elm1Delta triple mutant had an snf1- phenotype, i.e., it would not grow on raffinose and did not display hyperphosphorylation of the SNF1 target, Mig1p, in response to glucose starvation. CONCLUSIONS: Elm1p, Pak1p, and Tos3p are upstream kinases for the SNF1 complex that have partially redundant functions.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Secuencia de Aminoácidos , Western Blotting , Técnicas In Vitro , Espectrometría de Masas , Microscopía de Interferencia , Datos de Secuencia Molecular , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae
20.
J Clin Invest ; 113(2): 274-84, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14722619

RESUMEN

CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine beta-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine beta-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives.


Asunto(s)
Adenosina/química , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitio Alostérico , Secuencias de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , ADN/metabolismo , ADN Complementario/metabolismo , Dimerización , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Cinética , Ligandos , Hígado/metabolismo , Modelos Moleculares , Mutación , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Retinitis Pigmentosa/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA