RESUMEN
Platelet-derived growth factor (PDGF) acts through two conserved receptor tyrosine kinases: PDGFRα and PDGFRß. Gain-of-function mutations in human PDGFRB have been linked recently to genetic diseases characterized by connective tissue wasting (Penttinen syndrome) or overgrowth (Kosaki overgrowth syndrome), but it is unclear whether PDGFRB mutations alone are responsible. Mice with constitutive PDGFRß signaling caused by a kinase domain mutation (D849V) develop lethal autoinflammation. Here we used a genetic approach to investigate the mechanism of autoinflammation in Pdgfrb+/D849V mice and test the hypothesis that signal transducer and activator of transcription 1 (STAT1) mediates this phenotype. We show that Pdgfrb+/D849V mice with Stat1 knockout (Stat1-/-Pdgfrb+/D849V ) are rescued from autoinflammation and have improved life span compared with Stat1+/-Pdgfrb+/D849V mice. Furthermore, PDGFRß-STAT1 signaling suppresses PDGFRß itself. Thus, Stat1-/-Pdgfrb+/D849V fibroblasts exhibit increased PDGFRß signaling, and mice develop progressive overgrowth, a distinct phenotype from the wasting seen in Stat1+/-Pdgfrb+/D849V mice. Deletion of interferon receptors (Ifnar1 or Ifngr1) does not rescue wasting in Pdgfrb+/D849V mice, indicating that interferons are not required for autoinflammation. These results provide functional evidence that elevated PDGFRß signaling causes tissue wasting or overgrowth reminiscent of human genetic syndromes and that the STAT1 pathway is a crucial modulator of this phenotypic spectrum.
Asunto(s)
Trastornos del Crecimiento/genética , Mutación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción STAT1/genética , Tejido Adiposo/patología , Animales , Aorta/patología , Atrofia , Huesos/anomalías , Femenino , Fibroblastos/metabolismo , Fibrosis , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Hiperplasia , Inflamación/metabolismo , Interferones/fisiología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Células 3T3 NIH , Fenotipo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Piel/patologíaRESUMEN
Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.
RESUMEN
Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.
Asunto(s)
Apoptosis , Mediadores de Inflamación , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , ARN Largo no Codificante , Animales , Femenino , Humanos , Masculino , Ratas , Estudios de Casos y Controles , Línea Celular , Citocinas/metabolismo , Citocinas/sangre , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Infarto del Miocardio/diagnóstico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/diagnóstico , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Largo no Codificante/sangre , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Regulación hacia ArribaRESUMEN
BACKGROUND: In light of the abnormal expression of microRNA (miR-483-5p) in patients with atherosclerosis (AS), its role in vascular endothelial cell injury was explored. And the mechanisms related to autophagy were also elucidated. METHODS: Human umbilical vein endothelial cells (HUVECs) were given 100 mg/L ox-LDL to induce endothelial injury. Cell transfection was done to regulate miR-483-5p levels. Cell viability and apoptosis were detected. qRT-PCR was employed for the mRNA levels' detection. RESULTS: Autophagic flux impairment of HUVECs was detected after ox-LDL treatment, along with the upregulation of miR-483-5p. Ox-LDL inhibited cell viability and promoted cell apoptosis, but these influences were changed by miR-483-5p downregulation. MiR-483-5p downregulation decreased the mRNA levels of IL-1ß, IL-6, ICAM-1 and VCAM-1. 3-MA, the autophagy inhibitor, reversed the beneficial role of miR-483-5p downregulation in ox-LDL-induced HUVECs' injury. TIMP2 acts as a target gene of miR-483-5p, and was downregulated in HUVEC models. CONCLUSION: MiR-483-5p downregulation alleviated ox-LDL-induced endothelial injury via activating autophagy, this might be related to TIMP2.
Asunto(s)
Aterosclerosis , MicroARNs , Humanos , Regulación hacia Abajo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lipoproteínas LDL/toxicidad , ARN Mensajero/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , ApoptosisRESUMEN
Signal transducers and transcriptional activation 1 (Stat1) is a member of the STATs family, and its role in various biological responses, including cell proliferation, differentiation, migration, apoptosis, and immune regulation has been extensively studied. We aimed to investigate its role in pathological cardiac hypertrophy, which is currently poorly understood. Experiments using H9C2 cardiomyocytes, Stat1, and IfngR cardiomyocyte-specific knockout mice revealed that Stat1 had a protective effect on cardiac hypertrophy. Using transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice, we analyzed the degree of hypertrophy using echocardiography, pathology, and at the molecular level. Mice lacking Stat1 had more pronounced cardiac hypertrophy and fibrosis than wild-type TAC mice. Analysis of the molecular mechanisms suggested that Stat1 downregulated the mRNA levels of hypertrophy and fibrosis markers to inhibit cardiac hypertrophy, and promotes mitochondrial fission through the Ucp2/P-Drp1 pathway, enhancing mitochondrial function, and increasing compensatory myocardial ATP production in the compensatory phase for cardiac hypertrophy inhibition. Overall, this comprehensive analysis revealed that Stat1 inhibits cardiac hypertrophy by downregulating hypertrophic and fibrotic marker genes and enhancing the mitochondrial function to enhance cardiomyocyte function through the Ucp2/P-Drp1 signaling pathway.
Asunto(s)
Cardiomegalia/metabolismo , Mitocondrias Cardíacas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Línea Celular , Modelos Animales de Enfermedad , Dinaminas/genética , Dinaminas/metabolismo , Fibrosis , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/patología , Factor de Transcripción STAT1/genética , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismoRESUMEN
To improve ß-1,3-1,6-D-glucan (ß-glucan) production by Aureobasidium pullulans, an Agrobacterium tumefaciens-mediated transformation method was developed to screen a mutant A. pullulans CGMCC 19650. Based on thermal asymmetric-interlaced PCR detection, DNA sequencing, BLAST analysis, and quantitative real-time PCR assay, the T-DNA was identified to be inserted in the coding region of mal31 gene, which encodes a sugar transporter involved in pullulan biosynthesis in the mutant. The maximal biomass and ß-glucan production under batch fermentation were significantly increased by 47.6% and 78.6%, respectively, while pullulan production was decreased by 41.7% in the mutant, as compared to the parental strain A. pullulans CCTCC M 2012259. Analysis of the physiological mechanism of these changes revealed that mal31 gene disruption increased the transcriptional levels of pgm2, ugp, fks1, and kre6 genes; increased the amounts of key enzymes associated with UDPG and ß-glucan biosynthesis; and improved intracellular UDPG contents and energy supply, all of which favored ß-glucan production. However, the T-DNA insertion decreased the transcriptional levels of ags2 genes, and reduced the biosynthetic capability to form pullulan, resulting in the decrease in pullulan production. This study not only provides an effective approach for improved ß-glucan production by A. pullulans, but also presents an accurate and useful gene for metabolic engineering of the producer for efficient polysaccharide production. KEY POINTS: ⢠A mutant A. pullulans CGMCC 19650 was screened by using the ATMT method. ⢠The mal31 gene encoding a sugar transporter was disrupted in the mutant. ⢠ß-Glucan produced by the mutant was significantly improved.
Asunto(s)
Ascomicetos , beta-Glucanos , Ascomicetos/genética , Aureobasidium , ADN Bacteriano , GlucanosRESUMEN
Lipid accumulation is a central event in the development of chronic metabolic diseases, including obesity and type 2 diabetes, but the mechanisms responsible for lipid accumulation are incompletely understood. This study was designed to investigate the mechanisms for excess nutrient-induced lipid accumulation and whether activation of AMP-activated protein kinase (AMPK) prevents the hepatic lipid accumulation in excess nutrient-treated HepG2 cells and high fat diet (HFD)-fed mice. Exposure of HepG2 cells to high levels of glucose or palmitate induced the endoplasmic reticulum (ER) stress response, activated sterol regulatory element-binding protein-1 (SREBP-1), and enhanced lipid accumulation, all of which were sensitive to ER stress inhibitor and gene silencing of eukaryotic initiation factor 2α. The increases in ER stress response and lipid accumulation were associated with activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Inhibition of mTORC1 signaling attenuated the ER stress response and lipid accumulation induced by high glucose or by deletion of tuberous sclerosis 2. In addition, AMPK activation prevented the mTORC1 activation, ER stress response, and lipid accumulation. This effect was mimicked or abrogated, respectively, by overexpression of constitutively active and dominant-negative AMPK mutants. Finally, treatment of HFD-fed mice with 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside inhibited the mTORC1 pathway, suppressed the ER stress response, and prevented insulin resistance and hepatic lipid accumulation. We conclude that activation of AMPK prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 and ER stress response.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Dieta Alta en Grasa , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Lípidos/análisis , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Western Blotting , Colesterol/metabolismo , Retículo Endoplásmico/patología , Glucosa/farmacología , Técnica de Clampeo de la Glucosa , Células Hep G2 , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Hígado/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Edulcorantes/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Triglicéridos/metabolismoRESUMEN
Nutrient overload is associated with the development of obesity, insulin resistance, and type 2 diabetes. However, the underlying mechanisms for developing insulin resistance in the presence of excess nutrients are incompletely understood. We investigated whether activation of AMP-activated protein kinase (AMPK) prevents the hepatic insulin resistance that is induced by the consumption of a high-protein diet (HPD) and the presence of excess amino acids. Exposure of HepG2 cells to excess amino acids reduced AMPK phosphorylation, upregulated Notch1 expression, and impaired the insulin-stimulated phosphorylation of Akt Ser(473) and insulin receptor substrate-1 (IRS-1) Tyr(612). Inhibition of Notch1 prevented amino acid-induced insulin resistance, which was accompanied by reduced expression of Rbp-Jk, hairy and enhancer of split-1, and forkhead box O1. Mechanistically, mTORC1 signaling was activated by excess amino acids, which then positively regulated Notch1 expression through the activation of the signal transducer and activator of transcription 3 (STAT3). Activation of AMPK by metformin inhibited mTORC1-STAT3 signaling, thereby preventing excess amino acid-impaired insulin signaling. Finally, HPD feeding suppressed AMPK activity, activated mTORC1/STAT3/Notch1 signaling, and induced insulin resistance. Chronic administration of either metformin or rapamycin inhibited the HPD-activated mTORC1/STAT3/Notch1 signaling pathway and prevented hepatic insulin resistance. We conclude that the upregulation of Notch1 expression by hyperactive mTORC1 signaling is an essential event in the development of hepatic insulin resistance in the presence of excess amino acids. Activation of AMPK prevents amino acid-induced insulin resistance through the suppression of the mTORC1/STAT3/Notch1 signaling pathway.
Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Aminoácidos/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Receptor Notch1/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Aminoácidos/farmacología , Animales , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
Oxidized lipoproteins stimulate autophagy in advanced atherosclerotic plaques. However, the mechanisms underlying autophagy induction and the role of autophagy in atherogenesis remain to be determined. This study was designed to investigate the mechanisms by which 7-ketocholesterol (7-KC), a major component of oxidized lipoproteins, induces autophagy. This study was also designed to determine the effect of autophagy induction on apoptosis, a central event in the development of atherosclerosis. Exposure of human aortic smooth muscle cells to 7-KC increased autophagic flux. Autophagy induction was suppressed by treating the cells with either a reactive oxygen species scavenger or an antioxidant. Administration of 7-KC concomitantly up-regulated Nox4 expression, increased intracellular hydrogen peroxide levels, and inhibited autophagy-related gene 4B activity. Catalase overexpression to remove hydrogen peroxide or Nox4 knockdown with siRNA reduced intracellular hydrogen peroxide levels, restored autophagy-related gene 4B activity, and consequently attenuated 7-KC-induced autophagy. Moreover, inhibition of autophagy aggravated both endoplasmic reticulum (ER) stress and cell death in response to 7-KC. In contrast, up-regulation of autophagic activity by rapamycin had opposite effects. Finally, activation of autophagy by chronic rapamycin treatment attenuated ER stress, apoptosis, and atherosclerosis in apolipoprotein E knockout (ApoE(-/-)) mouse aortas. In conclusion, we demonstrate that up-regulation of autophagy is a cellular protective response that attenuates 7-KC-induced cell death in human aortic smooth muscle cells.
Asunto(s)
Autofagia/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Cetocolesteroles/farmacología , Animales , Aorta , Apoptosis , Aterosclerosis/prevención & control , Proteínas Relacionadas con la Autofagia , Fármacos Cardiovasculares/farmacología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cisteína Endopeptidasas/efectos de los fármacos , Cisteína Endopeptidasas/metabolismo , Depuradores de Radicales Libres/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirolimus/farmacología , Regulación hacia ArribaRESUMEN
Background: Extracellular vesicles (EVs) are membrane-bound vesicles containing various proteins, lipids, and nucleic acids. EVs are found in many body fluids, such as blood and urine. The release of EVs can facilitate intercellular communication through fusion with the plasma membrane or endocytosis into the recipient cell or through internalization of the contents. Recent studies have reported that EVs isolated from human endometrial epithelial cells (EECs) promote sperm fertilization ability. EVs from uterine flushing fluid more closely resemble the physiological condition of the uterus. However, it is unclear whether EVs derived directly from uterine flushing fluid have the same effect on sperm. This study aimed to research the effect of EVs from uterine flushing fluid on sperm. Methods: EVs were isolated from the uterine flushing fluid. The presence of EVs was confirmed by nanoparticle tracking analysis (NTA), Western blot, and transmission electron microscopy (TEM). EVs were incubated with human sperm for 2 h and 4 h. The effects of EVs on sperm were evaluated by analyzing acrosome reaction, sperm motility, and reactive oxygen species (ROS). Results: The EVs fractions isolated from the uterine fluid were observed in cup-shaped vesicles of different sizes by TEM. All isolated vesicles contained similar numbers of vesicles in the expected size range (30-200 nm) by NTA. CD9 and CD63 were detected in EVs by western blot. Comparing the motility of the two groups incubated sperm motility significantly differed at 4 h. The acrosome reactions were promoted by incubating with EVs significantly. ROS were increased in sperm incubated with EVs. Conclusion: Our results showed EVs present in the uterine fluid. Acrosome reactions and ROS levels increased in human sperm incubated with EVs. EVs from uterine fluid can promote the capacitation of human sperm. The increased capacitation after sperm interaction with EVs suggests a possible physiological effect during the transit of the uterus.
Asunto(s)
Exosomas , Especies Reactivas de Oxígeno , Capacitación Espermática , Espermatozoides , Útero , Humanos , Masculino , Femenino , Exosomas/metabolismo , Capacitación Espermática/fisiología , Espermatozoides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Útero/metabolismo , Útero/fisiología , Motilidad Espermática/fisiología , Líquidos Corporales/química , Líquidos Corporales/metabolismo , Reacción Acrosómica/fisiología , Microscopía Electrónica de TransmisiónRESUMEN
Accumulating evidence highlights the key importance of innate immunity in heart hypertrophy and failure. Though stimulator of interferon genes (STING) is an integral innate immunity regulator, whether cardiomyocyte-derived STING driving cardiac hypertrophy and failure has rarely been explored, nor has its underlying mechanism been clarified. Herein, we addressed these two questions through several mouse experiments. Our results revealed that cardiac tissues from patients exhibiting cardiac hypertrophy markedly increased STING expression. Myocardial tissues of mice challenged with angiotensin II (Ang II) or transverse aortic constriction (TAC) also showed that STING was consistently upregulated and activated. Activation of STING by cGAMP or DMXAA resulted in cardiomyocyte hypertrophy in vitro, which was abolished by STING knockout. Furthermore, deleting or pharmacologically inhibiting STING attenuated cardiac hypertrophy and dysfunction in TAC or Ang II-treated mice. In contrast, mice with cardiomyocyte-specific STING activation developed cardiac hypertrophy and failure. Mechanistically, NF-κB signaling but not TBK1 or autophagy formation was implicated in STING -induced cardiac hypertrophy and failure. Collectively, we identified that STING-NF-κB axis mediated inflammatory response to drive cardiac hypertrophy-associated heart failure, highlighting its promise as a potential therapeutic target in clinical practice.
Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Humanos , Ratones , Angiotensina II/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismoRESUMEN
To investigate the impacts of circ_0069094 on acute coronary syndrome. Real-time polymerase chain reaction was used to detect the expression levels of circ_0069094, and its diagnostic performance was evaluated using ROC curve. Spearman's method was performed for correlation analysis. The levels of SOD, MDA, vWF in ACS rat models were assessed by commercial kits. The activities of H/R cell models were detected by CCK-8, Transwell, flow cytometry. The GO and KEGG were performed to analyze the function of targeted genes of miR-484. The concentration of circ_0069094 was decreased in patients with ACS, ACS rat models and H/R HUVEC models. The dysfunction of SOD, MDA, vWF, LVIDs, LVDD, and LVEF in the ACS models was regulated by the increase of circ_0069094. The viability, migration, apoptosis of the H/R models were regulated by circ_0069094. MiR-484 was a ceRNA of circ_0069094 and mediated the function of circ_0069094.
RESUMEN
Nonhealing skin wounds are a problematic complication associated with diabetes. Therapeutic gases delivered by biomaterials have demonstrated powerful wound healing capabilities. However, the cellular responses and heterogeneity in the skin regeneration process after gas therapy remain elusive. Here, we display the benefit of the carbon monoxide (CO)-releasing hyaluronan hydrogel (CO@HAG) in promoting diabetic wound healing and investigate the cellular responses through single-cell transcriptomic analysis. The presented CO@HAG demonstrates wound microenvironment responsive gas releasing properties and accelerates the diabetic wound healing process in vivo. It is found that a new cluster of Cxcl14+ fibroblasts with progenitor property is accumulated in the CO@HAG-treated wound. This cluster of Cxcl14+ fibroblasts is yet unreported in the skin regeneration process. CO@HAG-treated wound macrophages feature a decrease in pro-inflammatory property, while their anti-inflammatory property increases. Moreover, the TGF-ß signal between the pro-inflammatory (M1) macrophage and the Cxcl14+ fibroblast in the CO@HAG-treated wound is attenuated based on cell-cell interaction analysis. Our study provides a useful hydrogel-mediated gas therapy method for diabetic wounds and new insights into cellular events in the skin regeneration process after gas-releasing biomaterials therapy.
RESUMEN
AIMS: Atherosclerosis (AS) is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signalling in AS are not known. In the present study, we investigated fibroblast growth factor receptor 1 (FGFR1) signalling in AS development and progression. METHODS AND RESULTS: Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION: Our study provides evidence of a new FGFR1-PLCγ-NF-κB axis in macrophages in inflammatory AS, supporting FGFR1 as a potentially therapeutic target for AS-related diseases.
Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Modelos Animales de Enfermedad , Macrófagos , Ratones Noqueados para ApoE , FN-kappa B , Fosfolipasa C gamma , Placa Aterosclerótica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/genética , FN-kappa B/metabolismo , Macrófagos/metabolismo , Masculino , Femenino , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/inmunología , Humanos , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo , Dieta Alta en Grasa , Pirazoles/farmacología , Mediadores de Inflamación/metabolismo , Benzamidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , PiperazinasRESUMEN
RATIONALE: Adenosine monophosphate-activated protein kinase (AMPK), a metabolic and redox sensor, is reported to suppress cell proliferation of nonmalignant and tumor cells. Whether AMPKα alters vascular neointima formation induced by vascular injury is unknown. OBJECTIVE: The aim of this study was to determine the roles of AMPKα in the development of vascular neointima hyperplasia and to elucidate the underlying mechanisms. METHODS AND RESULTS: Vascular smooth muscle cell (VSMC) proliferation and neointimal hyperplasia were evaluated in cultured VSMCs and wire-injured mouse carotid arteries from wild-type (WT, C57BL/6J), AMPKα2(-/-), and AMPKα1(-/-) mice. Mouse VSMCs derived from aortas of AMPKα2(-/-) mice exhibited increased proliferation compared with either WT or AMPKα1(-/-) VSMCs. Further, deletion of AMPKα2 but not AMPKα1 reduced the level of p27(Kip1), a cyclin-dependent kinase inhibitor, and increased the level of S-phase kinase-associated protein 2 (Skp2), a known E3 ubiquitin ligase for p27(Kip1), through activation of p52 nuclear factor kappa B (NF-κB)-2. Moreover, either pharmacological (ie, through compound C) or genetical (ie, through AMPKα2-specific siRNA) inhibition of AMPK decreased p27(Kip1) levels but increased the abundance of Skp2 in human VSMCs. Furthermore, gene silencing of Skp2 reversed the levels of p27(Kip1) and VSMCs proliferation. Finally, neointima formation after mechanical arterial injury was increased in AMPKα2(-/-) but not AMPKα1(-/-) mice. CONCLUSIONS: These findings indicate that deletion of AMPKα2 through p52-Skp2-mediated ubiquitination and degradation of p27(Kip1) accentuates neointimal hyperplasia in response to wire injury.
Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Proteínas Quinasas Asociadas a Fase-S/fisiología , Túnica Íntima/lesiones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Traumatismos de las Arterias Carótidas/enzimología , Traumatismos de las Arterias Carótidas/patología , División Celular , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Eliminación de Gen , Hiperplasia , Ratones , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Quinasas Asociadas a Fase-S/biosíntesis , Proteínas Quinasas Asociadas a Fase-S/genética , Túnica Íntima/enzimología , Túnica Íntima/patología , Ubiquitinación , Regulación hacia ArribaRESUMEN
AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1) is a member of the basic domain leucine zipper (bZIP)-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA), dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT), and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5). Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS) scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants' overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.
Asunto(s)
Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Arachis/genética , Sequías , Depuradores de Radicales Libres/metabolismo , Genes de Plantas , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas GenéticamenteRESUMEN
In the present study, corn starch, cob, and straw were biorefined and used as feedstocks for the production of pullulan. The titer and molecular weight (Mw) of pullulan significantly decreased when corn cob and straw hydrolysates were utilized by the parental strain Aureobasidium pullulans CCTCC M 2012259 (PS). Based on adaptive laboratory evolution of PS, an evolved strain A. pullulans EV6 with strong adaptability to the whole corn biomass hydrolysate and high capability of pullulan biosynthesis was screened. Batch pullulan fermentation results indicated that EV6 produced an increased titer of pullulan with a higher Mw than PS. The underlying reasons for these increases were revealed by assaying key enzymes activities and measuring intracellular uridine diphosphate glucose levels. Subsequently, whole-crop biorefinery of corn biomass was conducted, and the results confirmed that whole corn crop has immense potential for efficient pullulan production.
Asunto(s)
Ascomicetos , Zea mays , Biomasa , FermentaciónRESUMEN
AIMS: The activation of cardiac fibroblasts (CFs) leads to overproduction of collagens and subsequently cardiac fibrosis. However, the regulatory mechanism of CF function in the process of cardiac fibrosis remains unclear. This work investigated the function of polypyrimidine tract binding protein 1 (PTBP1)/nuclear receptor NR4A1 (Nur77)/fatty acid-binding protein 5 (FABP5) axis in myocardial fibrosis. METHODS AND RESULTS: Cardiac fibrosis was induced in mice suffered left anterior descending ligation. In parallel, neonatal mouse CFs were isolated and stimulated with transforming growth factor-ß1 (TGF-ß1). Cardiac fibrosis was evaluated by Masson's trichrome staining. Expression of PTBP1, Nur77, FABP5, collagen I, and collagen III was measured by quantitative real-time PCR and western blotting. Proliferation of CFs was assessed by 5-ethynyl-2'-deoxyuridine assay. Molecular interaction was validated by RNA-binding protein immunoprecipitation, chromatin immunoprecipitation, and dual luciferase reporter assay. PTBP1 was up-regulated (P < 0.05), whereas Nur77 (P < 0.05) and FABP5 (P < 0.05) were down-regulated in the fibrotic hearts of mice and TGF-ß1-exposed CFs. PTBP1 overexpression facilitated proliferation (P < 0.05) and collagen I (P < 0.05) and collagen III (P < 0.05) expression of CFs after stimulation with TGF-ß1. PTBP1 reduced Nur77 stability (P < 0.05) to inhibit Nur77 expression (P < 0.05) in CFs. Nur77 bound to FABP5 promoter to promote the transcription (P < 0.05) and expression (P < 0.05) of FABP5. Silencing of Nur77 or FABP5 abolished the inhibitory effect of PTBP1 knockdown on proliferation (P < 0.05) and collagen I (P < 0.05) and collagen III (P < 0.05) expression of CFs in vitro. PTBP1 depletion ameliorated cardiac fibrosis (P < 0.05), α-smooth muscle actin (P < 0.05), and collagen I (P < 0.05) expression in myocardial infarction mice through regulating Nur77/FABP5 pathway (P < 0.05) in vivo. CONCLUSIONS: PTBP1 contributed to cardiac fibrosis via promoting CF proliferation and collagen deposition through Nur77 mRNA decay and subsequent transcription inhibition of FABP5. Our findings suggest that PTBP1/Nur77/FABP5 axis may be potential targets for cardiac fibrosis therapy.
Asunto(s)
Miocardio , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Colágeno/metabolismo , Colágeno Tipo I , Proteínas de Unión a Ácidos Grasos/genética , Fibrosis , Miocardio/patología , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/farmacología , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
AIMS: Diabetic cardiomyopathy (DC) is one of serious complications of diabetic patients. This study investigated the biological function of activating transcription factor 4 (ATF4) in DC. METHODS AND RESULTS: Streptozotocin-treated mice and high glucose (HG)-exposed HL-1 cells were used as the in vivo and in vitro models of DC. Myocardial infarction (MI) was induced by left coronary artery ligation in mice. Cardiac functional parameters were detected by echocardiography. Target molecule expression was determined by real time quantitative PCR and western blotting. Cardiac fibrosis was observed by haematoxylin and eosin and Masson's staining. Cardiac apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling. Activities of superoxide dismutase, glutathione peroxidase, and levels of malonic dialdehyde and reactive oxygen species were used to assess oxidative stress damage. Molecular mechanisms were evaluated by chromatin immunoprecipitation, dual luciferase assay, and co-immunoprecipitation. ATF4 was up-regulated in the DC and MI mice (P < 0.01). Down-regulation of ATF4 improved cardiac function as evidenced by changes in cardiac functional parameters (P < 0.01), inhibited myocardial collagen I (P < 0.001) and collagen III (P < 0.001) expression, apoptosis (P < 0.001), and oxidative stress (P < 0.001) in diabetic mice. Collagen I (P < 0.01) and collagen III (P < 0.01) expression was increased in MI mice, which was reversed by ATF4 silencing (P < 0.05). ATF4 depletion enhanced viability (P < 0.01), repressed apoptosis (P < 0.001), oxidative damage (P < 0.001), and collagen I (P < 0.001), and collagen III (P < 0.001) expression of HG-stimulated HL-1 cells. ATF4 transcriptionally activated Smad ubiquitin regulatory factor 2 (Smurf2, P < 0.001) to promote ubiquitination and degradation of homeodomain interacting protein kinase-2 (P < 0.001) and subsequently caused inactivation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway (P < 0.001). The inhibitory effects of ATF4 silencing on HG-induced apoptosis (P < 0.01), oxidative injury (P < 0.01), collagen I (P < 0.001), and collagen III (P < 0.001) expression were reversed by Smurf2 overexpression. CONCLUSIONS: ATF4 facilitates diabetic cardiac fibrosis and oxidative stress by promoting Smurf2-mediated ubiquitination and degradation of homeodomain interacting protein kinase-2 and then inactivation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway, suggesting ATF4 as a treatment target for DC.
Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Infarto del Miocardio , Animales , Ratones , Factor de Transcripción Activador 4/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Fibrosis , Hemo-Oxigenasa 1 , Proteínas QuinasasRESUMEN
Vascular smooth muscle cells (VSMCs) proliferation, migration, and phenotypic switching are considered crucial events in the progression of neointima formation. Stimulator of interferon genes (STING), an innate immune sensor of cyclic dinucleotides against pathogens, in neointima formation remains obscure. Here, we observed a significant increase in STING expression on the neointima of injured vessels and mouse aortic VSMCs induced by PDGF-BB. In vivo, global knockout of STING (Sting-/-) attenuated neointima formation after vascular injury. In vitro data showed that STING deficiency significantly alleviated PDGF-BB-induced proliferation and migration in VSMCs. Furthermore, these contractile marker genes were upregulated in Sting-/- VSMCs. Overexpression of STING promoted proliferation, migration, and phenotypic switching in VSMCs. Mechanistically, STING-NF-κB signaling was involved in this process. The pharmacological inhibition of STING induced by C-176 partially prevented neointima formation due to suppression of VSMCs proliferation. Taken together, STING-NF-κB axis significantly promoted proliferation, migration, and phenotypic switching of VSMCs, which may be a novel therapeutic approach to combat vascular proliferative diseases.