RESUMEN
Spatial navigation patterns in indoor space usage can reveal important cues about the cognitive health of participants. In this work, we present a low-cost, scalable, open-source edge computing system using Bluetooth low energy (BLE) beacons for tracking indoor movements in a large, 1700 m2 facility used to carry out therapeutic activities for participants with mild cognitive impairment (MCI). The facility is instrumented with 39 edge computing systems, along with an on-premise fog server. The participants carry a BLE beacon, in which BLE signals are received and analyzed by the edge computing systems. Edge computing systems are sparsely distributed in the wide, complex indoor space, challenging the standard trilateration technique for localizing subjects, which assumes a dense installation of BLE beacons. We propose a graph trilateration approach that considers the temporal density of hits from the BLE beacon to surrounding edge devices to handle the inconsistent coverage of edge devices. This proposed method helps us tackle the varying signal strength, which leads to intermittent detection of beacons. The proposed method can pinpoint the positions of multiple participants with an average error of 4.4 m and over 85% accuracy in region-level localization across the entire study area. Our experimental results, evaluated in a clinical environment, suggest that an ordinary medical facility can be transformed into a smart space that enables automatic assessment of individuals' movements, which may reflect health status or response to treatment.
Asunto(s)
Nube Computacional , Navegación Espacial , Humanos , Tecnología Inalámbrica , Estado de Salud , Movimiento , Navegación Espacial/fisiologíaRESUMEN
The non-contact patient monitoring paradigm moves patient care into their homes and enables long-term patient studies. The challenge, however, is to make the system non-intrusive, privacy-preserving, and low-cost. To this end, we describe an open-source edge computing and ambient data capture system, developed using low-cost and readily available hardware. We describe five applications of our ambient data capture system. Namely: (1) Estimating occupancy and human activity phenotyping; (2) Medical equipment alarm classification; (3) Geolocation of humans in a built environment; (4) Ambient light logging; and (5) Ambient temperature and humidity logging. We obtained an accuracy of 94% for estimating occupancy from video. We stress-tested the alarm note classification in the absence and presence of speech and obtained micro averaged F1 scores of 0.98 and 0.93, respectively. The geolocation tracking provided a room-level accuracy of 98.7%. The root mean square error in the temperature sensor validation task was 0.3°C and for the humidity sensor, it was 1% Relative Humidity. The low-cost edge computing system presented here demonstrated the ability to capture and analyze a wide range of activities in a privacy-preserving manner in clinical and home environments and is able to provide key insights into the healthcare practices and patient behaviors.
Asunto(s)
Ambiente en el Hogar , Privacidad , Computadores , Humanos , Monitoreo FisiológicoRESUMEN
We consider a gas of point particles moving in a one-dimensional channel with a hard-core interparticle interaction that prevents particle crossings--this is called single-file motion. Starting from equilibrium initial conditions we observe the motion of a tagged particle. It is well known that if the individual particle dynamics is diffusive, then the tagged particle motion is subdiffusive, while for ballistic particle dynamics, the tagged particle motion is diffusive. Here we compute the exact large deviation function for the tagged particle displacement and show that this is universal, independent of the individual dynamics.
RESUMEN
Social interaction behaviors change as a result of both physical and psychiatric problems, and it is important to identify subtle changes in group activity engagements for monitoring the mental health of patients in clinics. This work proposes a system to identify when and where group formations occur in an approximately 1700 m2 therapeutic built environment using a distributed edge-computing camera network. The proposed method can localize group formations when provided with noisy positions and orientations of individuals, estimated from sparsely distributed multiview cameras, which run a lightweight multiperson 2-D pose detection model. Our group identification method demonstrated an F1 score of up to 90% with a mean absolute error of 1.25 m for group localization on our benchmark dataset. The dataset consisted of seven subjects walking, sitting, and conversing for 35 min in groups of various sizes ranging from 2 to 7 subjects. The proposed system is low-cost and scalable to any ordinary building to transform the indoor space into a smart environment using edge computing systems. We expect the proposed system to enhance existing therapeutic units for passively monitoring the social behaviors of patients when implementing real-time interventions.
RESUMEN
As we transition away from pandemic-induced isolation and social distancing, there is a need to estimate the risk of exposure in built environments. We propose a novel metric to quantify social distancing and the potential risk of exposure to airborne diseases in an indoor setting, which scales with distance and the number of people present. The risk of exposure metric is designed to incorporate the dynamics of particle movement in an enclosed set of rooms for people at different immunity levels, susceptibility due to age, background infection rates, intrinsic individual risk factors (e.g., comorbidities), mask-wearing levels, the half-life of the virus and ventilation rate in the environment. The model parameters have been selected for COVID-19, although the modeling framework applies to other airborne diseases. The performance of the metric is tested using simulations of a real physical environment, combining models for walking, path length dynamics, and air-conditioning replacement action. We have also created a visualization tool to help identify high-risk areas in the built environment. The resulting software framework is being used to help with planning movement and scheduling in a clinical environment ahead of reopening of the facility, for deciding the maximum time within an environment that is safe for a given number of people, for air replacement settings on air-conditioning and heating systems, and for mask-wearing policies. The framework can also be used for identifying locations where foot traffic might create high-risk zones and for planning timetabled transitions of groups of people between activities in different spaces. Moreover, when coupled with individual-level location tracking (via radio-frequency tagging, for example), the exposure risk metric can be used in real-time to estimate the risk of exposure to the coronavirus or other airborne illnesses, and intervene through air-conditioning action modification, changes in timetabling of group activities, mask-wearing policies, or restricting the number of individuals entering a given room/space. All software are provided online under an open-source license.