Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood Adv ; 3(19): 2870-2882, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31585951

RESUMEN

γδT cells are key players in cancer immune surveillance because of their ability to recognize malignant transformed cells, which makes them promising therapeutic tools in the treatment of cancer. However, the biological mechanisms of how γδT-cell receptors (TCRs) interact with their ligands are poorly understood. Within this context, we describe the novel allo-HLA-restricted and CD8α-dependent Vγ5Vδ1TCR. In contrast to the previous assumption of the general allo-HLA reactivity of a minor fraction of γδTCRs, we show that classic anti-HLA-directed, γδTCR-mediated reactivity can selectively act on hematological and solid tumor cells, while not harming healthy tissues in vitro and in vivo. We identified the molecular interface with proximity to the peptide-binding groove of HLA-A*24:02 as the essential determinant for recognition and describe the critical role of CD8 as a coreceptor. We conclude that alloreactive γδT-cell repertoires provide therapeutic opportunities, either within the context of haplotransplantation or as individual γδTCRs for genetic engineering of tumor-reactive T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Receptores de Antígenos de Linfocitos T/genética , Animales , Humanos , Ratones
2.
Leukemia ; 27(6): 1328-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23277330

RESUMEN

Human cytomegalovirus (CMV) infections and relapse of disease remain major problems after allogeneic stem cell transplantation (allo-SCT), in particular in combination with CMV-negative donors or cordblood transplantations. Recent data suggest a paradoxical association between CMV reactivation after allo-SCT and reduced leukemic relapse. Given the potential of Vδ2-negative γδT cells to recognize CMV-infected cells and tumor cells, the molecular biology of distinct γδT-cell subsets expanding during CMV reactivation after allo-SCT was investigated. Vδ2(neg) γδT-cell expansions after CMV reactivation were observed not only with conventional but also cordblood donors. Expanded γδT cells were capable of recognizing both CMV-infected cells and primary leukemic blasts. CMV and leukemia reactivity were restricted to the same clonal population, whereas other Vδ2(neg) T cells interact with dendritic cells (DCs). Cloned Vδ1 T-cell receptors (TCRs) mediated leukemia reactivity and DC interactions, but surprisingly not CMV reactivity. Interestingly, CD8αα expression appeared to be a signature of γδT cells after CMV exposure. However, functionally, CD8αα was primarily important in combination with selected leukemia-reactive Vδ1 TCRs, demonstrating for the first time a co-stimulatory role of CD8αα for distinct γδTCRs. Based on these observations, we advocate the exploration of adoptive transfer of unmodified Vδ2(neg) γδT cells after allo-SCT to tackle CMV reactivation and residual leukemic blasts, as well as application of leukemia-reactive Vδ1 TCR-engineered T cells as alternative therapeutic tools.


Asunto(s)
Citomegalovirus/fisiología , Leucemia/cirugía , Trasplante de Células Madre , Linfocitos T/inmunología , Activación Viral , Humanos , Leucemia/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Subgrupos de Linfocitos T , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA