RESUMEN
Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.
Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Humanos , Ratones , Animales , Streptococcus pyogenes/metabolismo , Estreptolisinas/genética , Estreptolisinas/metabolismo , Ratones Transgénicos , Infecciones Estreptocócicas/metabolismo , Proteínas Bacterianas/metabolismo , NasofaringeRESUMEN
Limiting the spread of synthetic genetic information outside of the intended use is essential for applications where biocontainment is critical. In particular, biocontainment of engineered probiotics and plasmids that are excreted from the mammalian gastrointestinal tract is needed to prevent escape and acquisition of genetic material that could confer a selective advantage to microbial communities. Here, we built a simple and lightweight biocontainment system that post-translationally activates a site-specific DNA endonuclease to degrade DNA at 18°C and not at higher temperatures. We constructed an orthogonal set of temperature-sensitive meganucleases (TSMs) by inserting the yeast VMA1 L212P temperature-sensitive intein into the coding regions of LAGLIDADG homing endonucleases. We showed that the TSMs eliminated plasmids carrying the cognate TSM target site from laboratory strains of Escherichia coli at the permissive 18°C but not at higher restrictive temperatures. Plasmid elimination is dependent on both TSM endonuclease activity and intein splicing. TSMs eliminated plasmids from E. coli Nissle 1917 after passage through the mouse gut when fecal resuspensions were incubated at 18°C but not at 37°C. Collectively, our data demonstrates the potential of thermoregulated meganucleases as a means of restricting engineered plasmids and probiotics to the mammalian gut.
Asunto(s)
Inteínas , Proteínas de Saccharomyces cerevisiae , Animales , Ratones , Inteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Empalme de Proteína , ADN/metabolismo , Saccharomyces cerevisiae/genética , Plásmidos/genética , Mamíferos/genética , ATPasas de Translocación de Protón , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Peptidoglycan hydrolases, or autolysins, play a critical role in cell wall remodeling and degradation, facilitating bacterial growth, cell division, and cell separation. In Staphylococcus aureus, the so-called "major" autolysin, Atl, has long been associated with host adhesion; however, the molecular basis underlying this phenomenon remains understudied. To investigate, we used the type V glycopeptide antibiotic complestatin, which binds to peptidoglycan and blocks the activity of autolysins, as a chemical probe of autolysin function. We also generated a chromosomally encoded, catalytically inactive variant of the Atl enzyme. Autolysin-mediated peptidoglycan hydrolysis, in particular Atl-mediated daughter cell separation, was shown to be critical for maintaining optimal surface levels of S. aureus cell wall-anchored proteins, including the fibronectin-binding proteins (FnBPs) and protein A (Spa). As such, disrupting autolysin function reduced the affinity of S. aureus for host cell ligands, and negatively impacted early stages of bacterial colonization in a systemic model of S. aureus infection. Phenotypic studies revealed that Spa was sequestered at the septum of complestatin-treated cells, highlighting that autolysins are required to liberate Spa during cell division. In summary, we reveal the hydrolytic activities of autolysins are associated with the surface display of S. aureus cell wall-anchored proteins. We demonstrate that by blocking autolysin function, type V glycopeptide antibiotics are promising antivirulence agents for the development of strategies to control S. aureus infections.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/química , Peptidoglicano/metabolismo , Hidrólisis , Antibacterianos/metabolismo , Glicopéptidos/metabolismo , Infecciones Estafilocócicas/metabolismo , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismoRESUMEN
Staphylococcus aureus poses a significant threat in both community and hospital settings due to its infective and pathogenic nature combined with its ability to resist the action of chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) represents a critical challenge. Metal-chelating thiosemicarbazones (TSCs) have shown promise in combating MRSA and while previous studies hinted at the antimicrobial potential of TSCs, their mechanisms of action against MRSA are still under investigation. We screened a chemical library for anti-staphylococcal compounds and identified a potent molecule named R91 that contained the NNSN structural motif found within TSCs. We identified that R91 and several structural analogs exhibited antimicrobial activity against numerous S. aureus isolates as well as other Gram-positive bacteria. RNAseq analysis revealed that R91 induces copper and oxidative stress responses. Checkerboard assays demonstrated synergy of R91 with copper, nickel, and zinc. Mutation of the SrrAB two-component regulatory system sensitizes S. aureus to R91 killing, further linking the oxidative stress response to R91 resistance. Moreover, R91 was found to induce hydrogen peroxide production, which contributed to its antimicrobial activity. Remarkably, no mutants with elevated R91 resistance were identified, despite extensive attempts. We further demonstrate that R91 can be used to effectively treat an intracellular reservoir of S. aureus in cell culture and can reduce bacterial burdens in a murine skin infection model. Combined, these data position R91 as a potent TSC effective against MRSA and other Gram-positive bacteria, with implications for future therapeutic development.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Tiosemicarbazonas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Humanos , Estrés Oxidativo/efectos de los fármacos , Cobre/química , Cobre/farmacología , Femenino , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genéticaRESUMEN
Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.
Asunto(s)
Interferón gamma/inmunología , Infecciones Estafilocócicas/inmunología , Superantígenos/inmunología , Animales , Bacteriemia , Enterotoxinas/inmunología , Exotoxinas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/inmunología , Staphylococcus aureus/patogenicidad , Linfocitos T/inmunología , Factores de Virulencia/inmunologíaRESUMEN
BACKGROUND: Staphylococcus aureus is the most common cause of life-threatening endovascular infections, including infective endocarditis (IE). These infections, especially when caused by methicillin-resistant strains (MRSA), feature limited therapeutic options and high morbidity and mortality rates. METHODS: Herein, we investigated the role of the purine biosynthesis repressor, PurR, in virulence factor expression and vancomycin (VAN) treatment outcomes in experimental IE due to MRSA. RESULTS: The PurR-mediated repression of purine biosynthesis was confirmed by enhanced purF expression and production of an intermediate purine metabolite in purR mutant strain. In addition, enhanced expression of the transcriptional regulators, sigB and sarA, and their key downstream virulence genes (eg, fnbA, and hla) was demonstrated in the purR mutant in vitro and within infected cardiac vegetations. Furthermore, purR deficiency enhanced fnbA/fnbB transcription, translating to increased fibronectin adhesion versus the wild type and purR-complemented strains. Notably, the purR mutant was refractory to significant reduction in target tissues MRSA burden following VAN treatment in the IE model. CONCLUSIONS: These findings suggest that the purine biosynthetic pathway intersects the coordination of virulence factor expression and in vivo persistence during VAN treatment, and may represent an avenue for novel antimicrobial development targeting MRSA.
Asunto(s)
Antibacterianos , Proteínas Bacterianas , Endocarditis Bacteriana , Staphylococcus aureus Resistente a Meticilina , Purinas , Proteínas Represoras , Infecciones Estafilocócicas , Vancomicina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Animales , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Purinas/biosíntesis , Antibacterianos/farmacología , Vancomicina/farmacología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/tratamiento farmacológico , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Ratones , Regulación Bacteriana de la Expresión Génica , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , HumanosRESUMEN
Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection indicating this bacterium overcomes host nutritional immunity. Despite this, there exists a significant knowledge gap regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Here we show that S. lugdunensis can usurp hydroxamate siderophores and staphyloferrin A and B from Staphylococcus aureus. These transport activities all required a functional FhuC ATPase. Moreover, we show that the acquisition of catechol siderophores and catecholamine stress hormones by S. lugdunensis required the presence of the sst-1 transporter-encoding locus, but not the sst-2 locus. Iron-dependent growth in acidic culture conditions necessitated the ferrous iron transport system encoded by feoAB. Heme iron was acquired via expression of the iron-regulated surface determinant (isd) locus. During systemic infection of mice, we demonstrated that while S. lugdunensis does not cause overt illness, it does colonize and proliferate to high numbers in the kidneys. By combining mutations in the various iron acquisition loci (isd, fhuC, sst-1, and feo), we demonstrate that only a strain deficient for all of these systems was attenuated in its ability to proliferate to high numbers in the murine kidney. We propose the concerted action of heme and non-heme iron acquisition systems also enable S. lugdunensis to cause human infection.
Asunto(s)
Staphylococcus lugdunensis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Mamíferos/metabolismo , Ratones , Sideróforos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus lugdunensis/genética , Staphylococcus lugdunensis/metabolismoRESUMEN
Staphylococcus aureus (especially methicillin-resistant S. aureus [MRSA]) is frequently associated with persistent bacteremia (PB) during vancomycin therapy despite consistent susceptibility in vitro. Strategic comparisons of PB strains versus those from vancomycin-resolving bacteremia (RB) would yield important mechanistic insights into PB outcomes. Clinical PB versus RB isolates were assessed in vitro for intracellular replication and small colony variant (SCV) formation within macrophages and endothelial cells (ECs) in the presence or absence of exogenous vancomycin. In both macrophages and ECs, PB and RB isolates replicated within lysosome-associated membrane protein-1 (LAMP-1)-positive compartments. PB isolates formed nonstable small colony variants (nsSCVs) in vancomycin-exposed host cells at a significantly higher frequency than matched RB isolates (in granulocyte-macrophage colony-stimulating factor [GM-CSF], human macrophages PB versus RB, P < 0.0001 at 48 h; in ECs, PB versus RB, P < 0.0001 at 24 h). This phenotype could represent one potential basis for the unique ability of PB isolates to adaptively resist vancomycin therapy and cause PB in humans. Elucidating the molecular mechanism(s) by which PB strains form nsSCVs could facilitate the discovery of novel treatment strategies to mitigate PB due to MRSA.
Asunto(s)
Bacteriemia , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Vancomicina/farmacología , Resistencia a la Meticilina , Células Endoteliales , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Bacteriemia/tratamiento farmacológico , Macrófagos , Antibacterianos/farmacología , Antibacterianos/uso terapéuticoRESUMEN
Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus lugdunensis , Humanos , Ratones , Animales , Staphylococcus lugdunensis/genética , Proteínas Hemolisinas/genética , Coagulasa , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/genética , Metaloproteasas , Péptidos , Inmunidad Innata , Proteínas Bacterianas/genética , MamíferosRESUMEN
Staphylococcus aureus is the leading cause of infections worldwide, and methicillin-resistant strains (MRSA) are emerging. New strategies are urgently needed to overcome this threat. Using a cell-based screen of ~45,000 diverse synthetic compounds, we discovered a potent bioactive, MAC-545496, that reverses ß-lactam resistance in the community-acquired MRSA USA300 strain. MAC-545496 could also serve as an antivirulence agent alone; it attenuates MRSA virulence in Galleria mellonella larvae. MAC-545496 inhibits biofilm formation and abrogates intracellular survival in macrophages. Mechanistic characterization revealed MAC-545496 to be a nanomolar inhibitor of GraR, a regulator that responds to cell-envelope stress and is an important virulence factor and determinant of antibiotic resistance. The small molecule discovered herein is an inhibitor of GraR function. MAC-545496 has value as a research tool to probe the GraXRS regulatory system and as an antibacterial lead series of a mechanism to combat drug-resistant Staphylococcal infections.
Asunto(s)
Antibacterianos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Resistencia betalactámica/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Larva/microbiología , Lepidópteros/microbiología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Pruebas de Sensibilidad Microbiana , Células RAW 264.7 , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/antagonistas & inhibidoresRESUMEN
Staphylococcus aureus is a notorious pathogen causing significant morbidity and mortality worldwide. The ability of S. aureus to survive and replicate within phagocytes such as macrophages represents an important facet of immune evasion and contributes to pathogenesis. The mechanisms by which S. aureus acquires nutrients within host cells to support growth remain poorly characterized. Here, we demonstrate that macrophages infected with S. aureus maintain their dynamic ruffling behavior and consume macromolecules from the extracellular milieu. To support the notion that fluid-phase uptake by macrophages can provide S. aureus with nutrients, we utilized the pharmacological inhibitors PIK-III and Dynasore to impair uptake of extracellular macromolecules. Inhibitor treatment also impaired S. aureus replication within macrophages. Finally, using a mutant of S. aureus that is defective in purine biosynthesis we show that intracellular growth is inhibited unless the macrophage culture medium is supplemented with the metabolite inosine monophosphate. This growth rescue can be impaired by inhibition of fluid-phase uptake. In summary, through consumption of the extracellular environment macrophages deliver nutrients to phagolysosomal S. aureus to promote bacterial growth.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Macrófagos , Nutrientes , FagosomasRESUMEN
Siderophores, iron-scavenging small molecules, are fundamental to bacterial nutrient metal acquisition and enable pathogens to overcome challenges imposed by nutritional immunity. Multimodal imaging mass spectrometry allows visualization of host-pathogen iron competition, by mapping siderophores within infected tissue. We have observed heterogeneous distributions of Staphylococcus aureus siderophores across infectious foci, challenging the paradigm that the vertebrate host is a uniformly iron-depleted environment to invading microbes.
Asunto(s)
Sideróforos/análisis , Staphylococcus aureus/patogenicidad , Absceso/microbiología , Animales , Citratos/análisis , Interacciones Huésped-Patógeno , Hierro/metabolismo , Ratones , Ornitina/análogos & derivados , Ornitina/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patologíaRESUMEN
Respiration-deficient Staphylococcus aureus small-colony variants (SCVs) frequently cause persistent infections, which necessitates they acquire iron, yet how SCVs obtain iron remains unknown. To address this, we created a stable hemB mutant from S. aureus USA300 strain LAC. The hemB SCV utilized exogenously supplied hemin but was attenuated for growth under conditions of iron starvation. Transcriptome sequencing (RNA-seq) showed that both wild-type (WT) S. aureus and the hemB mutant sense and respond to iron starvation; however, growth assays show that the hemB mutant is defective for siderophore-mediated iron acquisition. Indeed, the hemB SCV demonstrated limited utilization of endogenous staphyloferrin B or exogenously provided staphyloferrin A, deferoxamine mesylate (Desferal), and epinephrine. Direct measurement of intracellular ATP in hemB and WT S. aureus revealed that both strains can generate comparable levels of ATP during exponential growth, suggesting defects in ATP production cannot account for the inability to efficiently utilize siderophores. Defective siderophore utilization by hemB bacteria was also evident in vivo, as administration of Desferal failed to promote hemB bacterial growth in every organ analyzed except for the kidneys. In support of the hypothesis that S. aureus accesses heme in kidney abscesses, in vitro analyses revealed that increased hemin availability enables hemB bacteria to utilize siderophores for growth when iron availability is restricted. Taken together, our data support the conclusion that hemin is used not only as an iron source itself but also as a nutrient that promotes utilization of siderophore-iron complexes. IMPORTANCE S. aureus small-colony variants (SCVs) are associated with chronic recurrent infection and worsened clinical outcome. SCVs persist within the host despite administration of antibiotics. This study yields insight into how S. aureus SCVs acquire iron, which during infection of a host is a difficult-to-acquire metal nutrient. Under hemin-limited conditions, hemB S. aureus is impaired for siderophore-dependent growth, and in agreement, murine infection indicates that hemin-deficient SCVs meet their nutritional requirement for iron through utilization of hemin. Importantly, we demonstrate that hemB SCVs rely upon hemin as a nutrient to promote siderophore utilization. Therefore, perturbation of heme biosynthesis and/or utilization represents a viable to strategy to mitigate the ability of SCV bacteria to acquire siderophore-bound iron during infection.
Asunto(s)
Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hierro/administración & dosificación , Sideróforos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Variación Genética , Hierro/metabolismoRESUMEN
We recently discovered that 6-thioguanine (6-TG) is an antivirulence compound that is produced by a number of coagulase-negative staphylococci. In Staphylococcus aureus, it inhibits de novo purine biosynthesis and ribosomal protein expression, thus inhibiting growth and abrogating toxin production. Mechanisms by which S. aureus may develop resistance to this compound are currently unknown. Here, we show that 6-TG-resistant S. aureus mutants emerge spontaneously when the bacteria are subjected to high concentrations of 6-TG in vitro. Whole-genome sequencing of these mutants revealed frameshift and missense mutations in a xanthine-uracil permease family protein (stgP [six thioguanine permease]) and single nucleotide polymorphisms in hypoxanthine phosphoribosyltransferase (hpt). These mutations engender S. aureus the ability to resist both the growth inhibitory and toxin downregulation effects of 6-TG. While prophylactic administration of 6-TG ameliorates necrotic lesions in subcutaneous infection of mice with methicillin-resistant S. aureus (MRSA) strain USA300 LAC, the drug did not reduce lesion size formed by the 6-TG-resistant strains. These findings identify mechanisms of 6-TG resistance, and this information can be leveraged to inform strategies to slow the evolution of resistance.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos , Proteínas de Transporte de Membrana , Ratones , Mutación , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/genética , Tioguanina/farmacologíaRESUMEN
[This corrects the article DOI: 10.1371/journal.pgen.1006246.].
RESUMEN
Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.
Asunto(s)
Aminoácidos de Cadena Ramificada/biosíntesis , Proteínas Bacterianas/fisiología , Isoleucina/fisiología , Proteínas Represoras/fisiología , Staphylococcus aureus/metabolismo , Adaptación Biológica/genética , Regulación hacia Abajo/genética , Ambiente , Regulación Bacteriana de la Expresión Génica , Leucina/química , Redes y Vías Metabólicas/genética , Organismos Modificados Genéticamente , Proteínas Represoras/química , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Virulencia/genéticaRESUMEN
Staphylococcus aureus infection relies on iron acquisition from its host. S. aureus takes up iron through heme uptake by the iron-responsive surface determinant (Isd) system and by the production of iron-scavenging siderophores. Staphyloferrin B (SB) is a siderophore produced by the 9-gene sbn gene cluster for SB biosynthesis and efflux. Recently, the ninth gene product, SbnI, was determined to be a free l-serine kinase that produces O-phospho-l-serine (OPS), a substrate for SB biosynthesis. Previous studies have also characterized SbnI as a DNA-binding regulatory protein that senses heme to control sbn gene expression for SB synthesis. Here, we present crystal structures at 1.9-2.1 Å resolution of a SbnI homolog from Staphylococcus pseudintermedius (SpSbnI) in both apo form and in complex with ADP, a product of the kinase reaction; the latter confirmed the active-site location. The structures revealed that SpSbnI forms a dimer through C-terminal domain swapping and a dimer of dimers through intermolecular disulfide formation. Heme binding had only a modest effect on SbnI enzymatic activity, suggesting that its two functions are independent and structurally distinct. We identified a heme-binding site and observed catalytic heme transfer between a heme-degrading protein of the Isd system, IsdI, and SbnI. These findings support the notion that SbnI has a bifunctional role contributing precursor OPS to SB synthesis and directly sensing heme to control expression of the sbn locus. We propose that heme transfer from IsdI to SbnI enables S. aureus to control iron source preference according to the sources available in the environment.
Asunto(s)
Proteínas Bacterianas/fisiología , Citratos/biosíntesis , Hemo/metabolismo , Staphylococcus aureus/metabolismo , Adenosina Difosfato/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Catálisis , Citratos/metabolismo , Genes Bacterianos , Unión Proteica , Conformación Proteica , Staphylococcus aureus/genéticaRESUMEN
Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host.
Asunto(s)
Mutación/genética , Purinas/biosíntesis , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/genética , Factores de Virulencia/genética , Células A549 , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Línea Celular , Citoplasma/genética , Células Epiteliales/fisiología , Femenino , Fibronectinas/genética , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Fagocitos/fisiología , Células RAW 264.7 , Infecciones Estafilocócicas/microbiología , Transcripción Genética/genéticaRESUMEN
Divergent genes in Staphylococcus aureus USA300 encode the efflux pump FarE and TetR family regulator FarR, which confer resistance to antimicrobial unsaturated fatty acids. To study their regulation, we constructed USA300 ΔfarER, which exhibited a 2-fold reduction in MIC of linoleic acid. farE expressed from its native promoter on pLIfarE conferred increased resistance to USA300 but not USA300 ΔfarER Complementation of USA300 ΔfarER with pLIfarR also had no effect, whereas resistance was restored with pLIfarER or through ectopic expression of farE In electrophoretic mobility shift assays, FarR bound to three different oligonucleotide probes that each contained a TAGWTTA motif, occurring as (i) a singular motif overlapping the -10 element of the P farR promoter, (ii) in palindrome PAL1 immediately in the 3' direction of P farR , or (iii) within PAL2 upstream of the predicted P farE promoter. FarR autorepressed its expression through cooperative binding to PAL1 and the adjacent TAGWTTA motif in P farR Consistent with reports that S. aureus does not metabolize fatty acids through acyl coenzyme A (acyl-CoA) intermediates, DNA binding activity of FarR was not affected by linoleoyl-CoA. Conversely, induction of farE required fatty acid kinase FakA, which catalyzes the first metabolic step in the incorporation of unsaturated fatty acids into phospholipid. We conclude that FarR is needed to promote the expression of farE while strongly autorepressing its own expression, and our data are consistent with a model whereby FarR interacts with a FakA-dependent product of exogenous fatty acid metabolism to ensure that efflux only occurs when the metabolic capacity for incorporation of fatty acid into phospholipid is exceeded.IMPORTANCE Here, we describe the DNA binding and sensor specificity of FarR, a novel TetR family regulator (TFR) in Staphylococcus aureus Unlike the majority of TFRs that have been characterized, which function to repress a divergently transcribed gene, we find that FarR is needed to promote expression of the divergently transcribed farE gene, encoding a resistance-nodulation-division (RND) family efflux pump that is induced in response to antimicrobial unsaturated fatty acids. Induction of farE was dependent on the function of the fatty acid kinase FakA, which catalyzes the first metabolic step in the incorporation of exogenous unsaturated fatty acids into phospholipid. This represents a novel example of TFR function.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Antibacterianos/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Ácido Linoleico/metabolismo , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Regiones Promotoras Genéticas , Unión Proteica , Staphylococcus aureus/genéticaRESUMEN
Staphyloferrin B (SB) is an iron-chelating siderophore produced by Staphylococcus aureus in invasive infections. Proteins for SB biosynthesis and export are encoded by the sbnABCDEFGHI gene cluster, in which SbnI, a member of the ParB/Srx superfamily, acts as a heme-dependent transcriptional regulator of the sbn locus. However, no structural or functional information about SbnI is available. Here, a crystal structure of SbnI revealed striking structural similarity to an ADP-dependent free serine kinase, SerK, from the archaea Thermococcus kodakarensis We found that features of the active sites are conserved, and biochemical assays and 31P NMR and HPLC analyses indicated that SbnI is also a free serine kinase but uses ATP rather than ADP as phosphate donor to generate the SB precursor O-phospho-l-serine (OPS). SbnI consists of two domains, and elevated B-factors in domain II were consistent with the open-close reaction mechanism previously reported for SerK. Mutagenesis of Glu20 and Asp58 in SbnI disclosed that they are required for kinase activity. The only known OPS source in bacteria is through the phosphoserine aminotransferase activity of SerC within the serine biosynthesis pathway, and we demonstrate that an S. aureus serC mutant is a serine auxotroph, consistent with a function in l-serine biosynthesis. However, the serC mutant strain could produce SB when provided l-serine, suggesting that SbnI produces OPS for SB biosynthesis in vivo These findings indicate that besides transcriptionally regulating the sbn locus, SbnI also has an enzymatic role in the SB biosynthetic pathway.