Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plasmid ; 118: 102608, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34801582

RESUMEN

We developed a simplified, highly efficient Gateway reaction that recombines target DNA to expression (destination) plasmids in vivo and subsequently conjugates the final vector into a recipient strain, all in a single step. This recipient strain does not need to contain any selective marker and can be freely chosen as long as it is sensitive to ccdB counterselection and can be targeted by the RP4α conjugation system. Our protocol is simple, robust, and cost effective. It works in 96-well plate format and performs across a range of temperatures. We designed modular, minimal destination vectors containing a modified Gateway insert to ease vector design by providing locations for insertion of tags, promoters, or conjugations. To demonstrate the utility of our system, we created destination vectors with split adenylate cyclase tags for bacterial two-hybrid (B2H) studies and screened a library of diguanylate cyclases for protein-protein interactions in a single step.


Asunto(s)
Escherichia coli , Vectores Genéticos , Clonación Molecular , ADN , Escherichia coli/genética , Vectores Genéticos/genética , Plásmidos/genética
2.
Cell Death Differ ; 30(3): 839-853, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639541

RESUMEN

Taf4 (TATA-box binding protein-associated factor 4) is a subunit of the general transcription factor TFIID, a component of the RNA polymerase II pre-initiation complex that interacts with tissue-specific transcription factors to regulate gene expression. Properly regulated gene expression is particularly important in the intestinal epithelium that is constantly renewed from stem cells. Tissue-specific inactivation of Taf4 in murine intestinal epithelium during embryogenesis compromised gut morphogenesis and the emergence of adult-type stem cells. In adults, Taf4 loss impacted the stem cell compartment and associated Paneth cells in the stem cell niche, epithelial turnover and differentiation of mature cells, thus exacerbating the response to inflammatory challenge. Taf4 inactivation ex vivo in enteroids prevented budding formation and maintenance and caused broad chromatin remodeling and a strong reduction in the numbers of stem and progenitor cells with a concomitant increase in an undifferentiated cell population that displayed high activity of the Ezh2 and Suz12 components of Polycomb Repressive Complex 2 (PRC2). Treatment of Taf4-mutant enteroids with a specific Ezh2 inhibitor restored buddings, cell proliferation and the stem/progenitor compartment. Taf4 loss also led to increased PRC2 activity in cells of adult crypts associated with modification of the immune/inflammatory microenvironment that potentiated Apc-driven tumorigenesis. Our results reveal a novel function of Taf4 in antagonizing PRC2-mediated repression of the stem cell gene expression program to assure normal development, homeostasis, and immune-microenvironment of the intestinal epithelium.


Asunto(s)
Proteínas de Drosophila , Células Madre , Ratones , Animales , Diferenciación Celular/genética , Células Madre/metabolismo , Factor de Transcripción TFIID/genética , Mucosa Intestinal/metabolismo , Proteínas de Drosophila/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Epigénesis Genética
3.
Clin Cancer Res ; 29(7): 1279-1291, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36374555

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICI) have revolutionized the treatment of patients with clear-cell renal cell carcinomas (ccRCC). Although analyses of transcriptome, genetic alterations, and the tumor microenvironment (TME) have shed light into mechanisms of response and resistance to these agents, the role of epigenetic alterations in this process remains fully unknown. EXPERIMENTAL DESIGN: We investigated the methylome of six ccRCC cohorts as well as one cell line dataset. Of note, we took advantage of the BIONIKK trial aiming to tailor treatments according to Paris Descartes 4-gene expression subgroups, and performed Illumina EPIC profiling for 46 samples related to patients treated with ipilimumab plus nivolumab, and 17 samples related to patients treated with sunitinib. RESULTS: A group of tumors associated with enhancer demethylation was discovered, namely TED. TED was associated with tumors with sarcomatoid differentiation and poor clinical outcome. TED harbored TET1 promoter demethylation, activated the gene expression signature of epithelial-mesenchymal transition and IL6/JAK/STAT3 pathways, and displayed a TME characterized by both immune activation and suppressive populations, fibroblast infiltration, and endothelial depletion. In addition, TED was a predictive factor of resistance to the combination of first-line ipilimumab-nivolumab in the BIONIKK clinical trial. Finally, TED was associated with activation of specific regulons, which we also found to be predictive of resistance to immunotherapy in an independent cohort. CONCLUSIONS: We report on the discovery of a novel epigenetic phenotype associated with resistance to ICIs that may pave the way to better personalizing patients' treatments. See related commentary by Zhou and Kim, p. 1170.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Nivolumab/administración & dosificación , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Ipilimumab/administración & dosificación , Metilación de ADN , Fenotipo , Microambiente Tumoral/genética , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas/genética
4.
Nat Commun ; 14(1): 3034, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236926

RESUMEN

Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells.


Asunto(s)
Carcinoma Medular , Carcinoma de Células Renales , Ferroptosis , Neoplasias Renales , Rasgo Drepanocítico , Humanos , Neoplasias Renales/patología , Carcinoma Medular/metabolismo , Carcinoma de Células Renales/patología , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Proteínas Represoras , Proteínas de Homeodominio
5.
Cancer Res ; 83(17): 2952-2969, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335139

RESUMEN

Immune checkpoint inhibitors (ICI) represent the cornerstone for the treatment of patients with metastatic clear cell renal cell carcinoma (ccRCC). Despite a favorable response for a subset of patients, others experience primary progressive disease, highlighting the need to precisely understand the plasticity of cancer cells and their cross-talk with the microenvironment to better predict therapeutic response and personalize treatment. Single-cell RNA sequencing of ccRCC at different disease stages and normal adjacent tissue (NAT) from patients identified 46 cell populations, including 5 tumor subpopulations, characterized by distinct transcriptional signatures representing an epithelial-to-mesenchymal transition gradient and a novel inflamed state. Deconvolution of the tumor and microenvironment signatures in public data sets and data from the BIONIKK clinical trial (NCT02960906) revealed a strong correlation between mesenchymal-like ccRCC cells and myofibroblastic cancer-associated fibroblasts (myCAF), which are both enriched in metastases and correlate with poor patient survival. Spatial transcriptomics and multiplex immune staining uncovered the spatial proximity of mesenchymal-like ccRCC cells and myCAFs at the tumor-NAT interface. Moreover, enrichment in myCAFs was associated with primary resistance to ICI therapy in the BIONIKK clinical trial. These data highlight the epithelial-mesenchymal plasticity of ccRCC cancer cells and their relationship with myCAFs, a critical component of the microenvironment associated with poor outcome and ICI resistance. SIGNIFICANCE: Single-cell and spatial transcriptomics reveal the proximity of mesenchymal tumor cells to myofibroblastic cancer-associated fibroblasts and their association with disease outcome and immune checkpoint inhibitor response in clear cell renal cell carcinoma.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Fibroblastos Asociados al Cáncer/patología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Perfilación de la Expresión Génica , Inmunoterapia , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Pronóstico , Microambiente Tumoral , Ensayos Clínicos como Asunto
6.
Cell Rep Med ; 4(11): 101287, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967556

RESUMEN

The efficacy of immune checkpoint inhibitors varies in clear-cell renal cell carcinoma (ccRCC), with notable primary resistance among patients. Here, we integrate epigenetic (DNA methylation) and transcriptome data to identify a ccRCC subtype characterized by cancer-specific promoter hypermethylation and epigenetic silencing of Polycomb targets. We develop and validate an index of methylation-based epigenetic silencing (iMES) that predicts primary resistance to immune checkpoint inhibition (ICI) in the BIONIKK trial. High iMES is associated with VEGF pathway silencing, endothelial cell depletion, immune activation/suppression, EZH2 activation, BAP1/SETD2 deficiency, and resistance to ICI. Combination therapy with hypomethylating agents or tyrosine kinase inhibitors may benefit patients with high iMES. Intriguingly, tumors with low iMES exhibit increased endothelial cells and improved ICI response, suggesting the importance of angiogenesis in ICI treatment. We also develop a transcriptome-based analogous system for extended applicability of iMES. Our study underscores the interplay between epigenetic alterations and tumor microenvironment in determining immunotherapy response.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Metilación de ADN/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Microambiente Tumoral/genética , Células Endoteliales/metabolismo , Inmunoterapia
7.
Sci Rep ; 11(1): 9586, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953310

RESUMEN

Thermophilic organisms are extensively studied in industrial biotechnology, for exploration of the limits of life, and in other contexts. Their optimal growth at high temperatures presents a challenge for the development of genetic tools for their genome editing, since genetic markers and selection substrates are often thermolabile. We sought to develop a thermostable CRISPR-Cas9 based system for genome editing of thermophiles. We identified CaldoCas9 and designed an associated guide RNA and showed that the pair have targetable nuclease activity in vitro at temperatures up to 65 °C. We performed a detailed characterization of the protospacer adjacent motif specificity of CaldoCas9, which revealed a preference for 5'-NNNNGNMA. We constructed a plasmid vector for the delivery and use of the CaldoCas9 based genome editing system in the extreme thermophile Thermus thermophilus at 65 °C. Using the vector, we generated gene knock-out mutants of T. thermophilus, targeting genes on the bacterial chromosome and megaplasmid. Mutants were obtained at a frequency of about 90%. We demonstrated that the vector can be cured from mutants for a subsequent round of genome editing. CRISPR-Cas9 based genome editing has not been reported previously in the extreme thermophile T. thermophilus. These results may facilitate development of genome editing tools for other extreme thermophiles and to that end, the vector has been made available via the plasmid repository Addgene.


Asunto(s)
Genoma Bacteriano , Mutación , Thermus thermophilus/genética , Sistemas CRISPR-Cas , Edición Génica , Temperatura
8.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34114607

RESUMEN

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.


Asunto(s)
Genoma Viral/genética , Metagenómica , Bioprospección/organización & administración , Biología Computacional , Bases de Datos Genéticas , Europa (Continente) , Respiraderos Hidrotermales/virología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Viroma/genética , Virus/clasificación , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA